Part 1 of this series is here, and the event that led to my writing it is discussed here. I now expect to write 2-3 additional posts on this topic and may create a new page that summarizes the whole series. I’ve hidden the Bark Scaling Gallery page to be reworked later or incorporated into the summary.
This post will reiterate, revise, and expand upon earlier ones dealing with bark scaling and woodpecker anatomy. The next one will focus on certain characteristics of the scaling we think is being done by Ivory-billed Woodpeckers, on finer details that characterize it (based in part on comparison with work done by congeners), and on how to differentiate it from bark removal done by squirrels. The following entry will deal with bark chips in more depth, and from a slightly different angle than previous posts on that subject.
I had originally intended to address the next post’s planned content in this one, but as I started writing, I realized the long but necessary introduction would bury the lede. It soon became clear that I’d have to divide the post in two with this one for background.
The first important point is that woodpecker taxonomy is in a state of dramatic change, so much so that the American Ornithological Union is being advised to place Downy and Hairy Woodpeckers in separate genera and that their current genus, Picoides, should be divided into four. Notwithstanding the taxonomic upheaval, there’s no question that Campephilus woodpeckers and Dryocopus woodpeckers are only distantly related, that their similarities are the product of convergent evolution, and that these similarities are far more superficial – involving size and coloration – than structural or behavioral. Formerly, some incorrect taxonomic assumptions led to the lumping of Campephilus and Dryocopus into the “tribe” Camphelini, an idea that’s discussed and dismissed in the first paper linked to above. This has been one factor in perpetuating some fairly common and persistent misconceptions – that the two species are closely related, that they occupy or occupied the same ecological niche and might be competitors, and that hybridization might be possible (something I hear surprisingly often).
The following differences are relevant to this discussion:
- Bill size and shape. These are dramatically divergent as any comparison shot of specimens makes clear. It’s also worth noting that the three North American Campephili are closely related to each other. DNA analysis suggests the three are distinct species and the Cuban ivorybill may be more closely related to the Imperial Woodpecker than the mainland US species. This study suggested that divergence among the three took place between .08 and 1.6 million years ago. The southern members of the genus are more remote cousins, having diverged approximately 3.9 million years ago. At one time, the southern species were considered a distinct genus, and they have smaller bills, both objectively and relative to body size. Magellanic Woodpeckers have the smallest bills relative to body size in the genus, and their foraging behavior is more Dryocopus-like than their congeners’.
- Neck length. The much longer neck of the ivorybill allows for a broader range of motion.
- Foot and leg structure. Campephilus woodpeckers have a unique variation on what have been called pamprodactylous feet. (Wikipedia and David Sibley both miss the vast difference between Campephilus foot structure and that of most other woodpeckers.) In this genus, the hallux (first) and fourth toe (the rear toes) are both on the outer edge of the foot; the toes can be rolled forward for climbing and backward for perching in a manner that looks more zygodactylous. (The preceding links to images of Sonny Boy, the juvenile ivorybill, and Kuhn are great illustrations.) The fourth toe is highly elongated, the longest toe on the foot, and the hallux, (in the ivorybill, the outermost toe) is relatively longer than in any climbing woodpecker species. The second and third (innermost toes) are angled inward. This is shown quite clearly in a number of the images from the Singer Tract, including Plate 13 in Tanner.
Detail of Tanner’s Plate 13 showing foot structure. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library - Dryocopus woodpecker feet are closer to being truly zygodactylous – two in front, two behind, with limited mobility and the hallux as the inner rear toe, although the fourth toe can be rolled outward to some extent; this provides less stability when making lateral blows.
Pileated Woodpecker foot showing zygodactylous structure and slight outward rotation of fourth toe. Photo courtesy of Carrie Griffis, who posted it on the Woodpeckers of the World Facebook group and kindly granted permission to include it here. In addition, Campephilus woodpeckers typically climb and forage with their legs both farther apart and higher relative to their bodies than Dryocopus. This enables them to keep their lower bodies closer to the trunk and move their upper bodies more freely, providing more stability for making powerful, lateral blows.
4. Tail structure: the ivorybill’s tail feathers are long, thin, barb-like, and stiffer than the pileated’s. The tail serves as an anchor and also helps allow for a broader range of motion.
Middle Tail Feathers: Flicker, Ivory-billed, and Hairy Woodpecker Pileated Woodpecker Tail Feathers. Note how the longest one resembles that of a Flicker more than that of an ivorybill. 5. There other structural differences, including wing shape, but these are the main ones that point to how Ivory-billed Woodpeckers have evolved in a way that makes bark scaling their most efficient foraging modality, whereas Pileateds are far better suited to digging, using a perpendicular motion.
Much of the foregoing is based on Walter Bock’s analysis of woodpecker adaptations for climbing, which was also discussed in depth here. I’ve tried to explain Bock’s key points in straightforward and less technical terms. A longer quote from Bock appears at the end of this post.*
In addition to these structural differences, Pileated Woodpeckers (and to the best of my knowledge all their congeners) regurgitate when feeding young. Campephilus woodpeckers carry food to the nest and appear to be highly dependent on beetle larvae when caring for their nestlings. This means that Pileated Woodpeckers have to ability to take advantage of multiple food sources during nesting season, while Ivory-bills have a more limited range of options. While I don’t think this supports Tanner’s theory of old-growth dependence, it does point to a higher degree of specialization that would impact numbers, range, and suitability of habitat.
At the same time, the anatomical differences and degree of specialization convince me that certain types of feeding sign are beyond the physical capacity of a Pileated Woodpecker and are likely diagnostic for Ivory-billed Woodpecker.
There is a dearth of clear images showing Ivory-billed Woodpecker feeding sign. There are a handful of photographs, most of them very poor. The majority were taken in the Singer Tract and some showing work on pines were taken in Florida by Allen and Kellogg. Few of them depict the high branch work that Tanner described as being characteristic, and when they do, there’s virtually nothing that can be discerned from them. It is also not entirely clear that Tanner’s attribution of feeding sign to ivorybills was always based on direct observation, which makes us wonder whether some of the work might actually have been done by squirrels. Regardless, this makes it difficult to draw inferences from the existing body of imagery.
That said and with awareness of the perils in extrapolating, one lesser known image from the Singer Tract is worth comparing with the work on boles that’s been discussed in multiple posts.
“The Blind at Elm Rock”, Ivory-billed Woodpecker nest tree and detail showing scaling and excavation on trunk. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library
This is a view of the 1935 nest tree, which was a red maple. It’s taken at a different angle than the more familiar shots, so it shows some large areas of scaling on the bole that the others do not. While I can do no more than infer that this was done by ivorybills, it’s clearly old, and there’s an abundance of excavation in the underlying wood; nevertheless, the edges and contours of the scaling are strikingly similar to the work we’ve found on boles, especially the area at the lower right, just above the intervening foliage.
This is the jagged appearance I described in the previous post; the similarities are most evident in the picture below and on the home page.
Because there are so few informative images of ivorybill feeding sign, the best available option is to look at the work of other Campephilus woodpeckers. Even though they are not as closely related as the Cuban ivorybill or the imperial, their morphology and foraging behaviors are similar; even the work of the smaller-billed but oft-photographed magellanic can provide some clues. I’ll examine this and some probable identifying features of squirrel scaling in the next post, which will take a close look at scaled patches on trees.
*”. . . in most woodpeckers, as, for example, the pileated woodpecker, the legs are held more or less beneath the body,the joints are doubled up,and the tarsus is held away from the tree trunk. This position of the legs is disadvantageous for the bird, because the body is held away from the tree trunk and the muscles of the leg are working at a mechanical disadvantage; the analogy is to the mountain climber who is standing on a narrow ledge with hand holds only beneath his chest. In the ivory-billed woodpecker, the legs are directed away from the center of the body, and the tarsus is pressed against the tree trunk. This method allows the body to be held close to the tree, with the joints of the leg extended. Hence the leg muscles have a mechanical advantage, because they are at the beginning of their contraction cycle and are acting along the length of the segments of the leg. When the body is held close to the trunk, it not only decreases the outward component of gravity but allows the tail feathers to be applied to the supporting surface for a greater distance from their tips. If the bird is climbing on smaller limbs, the feet can encircle the limb and thus obtain better support. However, no matter what size the limb is, the disposition of the legs and the spreading of the toes of the ivory-billed woodpecker furnish direct and powerful resistance to both the lateral and backward motions of the woodpecker when it is at work and, with the tail, furnish a tripodal base of great strength against the pull of gravity.”