Insights, Ants, and Old Growth: a Nuanced View of the Ivorybill’s Decline and Possible Survival

I’ve just finished reading Tanner’s dissertation and have gained some new insights into topics that have been discussed in a number of earlier posts.

Conventional wisdom, following Tanner, holds that the Ivory-billed Woodpecker’s decline and possible extinction were caused by habitat loss, specifically the logging of old growth forests during the 19th and early 20th centuries. Birdlife International’s fact sheet on the species suggests “that large contiguous tracts of mature woodland would be required to support a viable population”, referencing Jackson 2002. Snyder et al. have proposed an alternative hypothesis that “human depredation was the primary factor.”  (p.9).

Tanner’s model depends on the idea that food supply was the limiting factor on ivorybill populations, because the species is highly specialized, and that old growth conditions were optimal or essential. While Tanner was aware that ivorybills bred successfully in an area that was predominantly second growth, at Mack’s Bayou, he glossed over this fact in the monograph, and became more dogmatic about old growth as a requirement in later years.

Snyder and some others have contended that the ivorybill is a generalist. According to Snyder, “the data available on diet and foraging methods simply do not provide compelling evidence for strong feeding specialization.” Snyder goes on to suggest that “[i]ts apparent skill in exploiting recently dead timber, coupled with its ability to feed in a variety of other ways, may even have given it some significant foraging advantages over the pileated woodpecker, a species apparently much less capable of bark stripping. Indeed, the pileated woodpecker, like other Dryocopus woodpeckers, may well be more of a food specialist than any of the Campephilus woodpeckers.” (p. 37).

As I see it, there are elements of truth in both models, but neither is complete. In addition, I think that each model relies on at least one flawed premise.

The old growth/virgin forest component of Tanner’s model fails to account for the facts that the Singer Tract population was dwindling even before logging began in earnest and that birds appear to have remained in the Tract until well after it had been extensively logged. Tanner suggested another possibility, “perhaps the greatest factor reducing the rate of ivorybill reproduction is the failure of some birds to nest. One reason for their not breeding is immaturity, for it is probable that ivorybills do not nest until they are two years old. Another possibility is that the quantity of food available to the woodpeckers may determine whether they will nest or not.” (p. 83).

Tanner struggled to account for the fact that the ivorybill population at Singer was dwindling by the mid-1930s, even though overall habitat quality had, if anything, improved relative to what it had been a few decades earlier. He attributed the higher relative abundance in previous years to tree mortality due to fires that took place in 1917 and 1924. Tanner also recognized the probable importance of fire in the pre-contact era, although he seems to have been unaware of the ways pre-contact Native Americans used fire, both for agriculture and habitat management. (The impacts of Native American fire use were almost surely different from what occurred in the 20th century Singer Tract).

Neither Tanner (whose study predates the emergence of the discipline) nor Snyder, take environmental history sufficiently into account. There had been major ‘changes in the land’ long before large scale logging began in the southeast and before the reports of local abundance on which Snyder relies. These changes include: the post-contact collapse of Native American civilizations, the introduction of European plant and animal species, the clearing of log jams on major and secondary North American rivers, habitat fragmentation due to the plantation economy, and the near extirpation of the beaver.

All of these elements likely contributed to a major decline in ivorybill populations. Ivory-billed woodpeckers likely concentrated locally in response to major disturbances, regardless of whether forests were old-growth or advanced second-growth, and this type of specialization caused birds to congregate, making it easier for collectors to kill them in large numbers in short periods of time. Snyder likely misinterpreted this collection of large numbers of Ivory-bills in short periods of time as reflecting a greater regional abundance. In contrast, and more consistent with Tanner, this ecological response to disturbed areas led, in some places, to the collectors extirpating regional populations.

In the latter part of the 19th century, hunting probably sped the collapse of the remaining population, but Snyder’s claim that available data on diet and foraging methods do not provide compelling evidence of specialization fails to account for the anatomical and other evidence that suggests otherwise. It also fails to account for the Pileated Woodpecker’s far more extensive range and ability to thrive in a wider variety of habitats, including badly fragmented and degraded ones. I made some of the case for specialization in a series of recent posts, but there’s more to add, especially with regard to ants.

In one of those posts, I hypothesized that the inability to exploit ants as a food resource was a key component, perhaps the primary component, in explaining the decline of the ivorybill. A commenter asked whether there’s evidence to support the idea that ivorybills and other Campephilus woodpeckers don’t feed on ants and also whether there’s evidence to support the idea that Campephilus woodpeckers don’t regurgitate.

Adult Campephilus woodpeckers rarely feed on ants but do not feed them to their young. They make frequent trips to the nest with food items stored in the bill or at the back of the bill. (M. Lammertink, pers. comm.) Dryocopus woodpeckers and those in closely related genera (the “tribe” Malarpicini) feed their young by regurgitating, while other woodpeckers do not. (Manegold and Topfer, 2012). I think the capacity of Pileated Woodpeckers to consume ants in large quantities and to feed them to their young is a significant distinguishing factor and that Tanner was correct in suggesting that food supply was a major limiting factor on Ivory-billed Woodpecker populations.

Ants comprise up to 33% of the world’s terrestrial animal biomass. In Finland, they comprise as much as 10%. In tropical forests, the percentage is much higher, exceeding vertebrate biomass by 400%. Tanner’s comparative analysis of available ivorybill and pileated food did not include ants, so Tanner’s comparative estimate of available insect prey – suggesting that pileateds in the Singer Tract had access to approximately four times what ivorybills did – was in fact extremely low.

Tanner’s dissertation concludes with a discussion of Audubon’s ivorybill dissection, something that was omitted from the monograph. While I had a passing familiarity with the Audubon material, I had not looked at it carefully. Nor had I compared his ivorybill and pileated dissections.

Tanner wrote: “The proventriculus is both muscular and glandular. Audubon’s drawings and text indicate that the proventriculus of a Pileated is much larger in proportion to the stomach than is the case in the Ivory-bill.” Audubon described the ivorybill proventriculus as being only minimally wider than the esophagus. By contrast, the pileated proventriculus as “an immense sac, resembling a crop, 2 1/4 inches in length and 1 and 5 twelfths in width,” or nearly three times as wide as the esophagus.

Screen Shot 2016-07-11 at 1.47.01 PM

Audubon’s drawing of Ivory-billed Woodpecker digestive tract showing slightly widened proventriculus.

Screen Shot 2016-07-11 at 1.47.28 PM

Audubon’s drawing of Pileated Woodpecker digestive tract showing large, sac-like proventriculus.

The proventriculus and stomach of one of Audubon’s specimens contained “a vast mass of ants and other insects”. According to Bent, Beal found one pileated stomach that contained 2,600 ants. (Others contained fewer, 153 and 469, according to Sutton.) Thus, it’s clear that even if ivorybills sometimes ate ants, they lacked the capacity to consume them in large quantities, let alone feed them to their young.

This supports Tanner’s view that specialization was a limiting factor on ivorybill populations. I’ve previously suggested that this might apply only to breeding season, but it seems reasonable to infer that it’s a factor year-round, based on the differences in proventricular structure.

All of that said, I’d argue that this specialization should not necessarily be read to include dependence on large tracts of mature, contiguous forest. The data from the Singer Tract suggest that even under these ‘optimal’ conditions, breeding was limited. And the fact that the Mack’s Bayou birds bred successfully in an area of second growth suggests that birds could thrive under ‘suboptimal’ conditions. The extent to which survival might be possible in fragmented habitat is less clear, but Snyder (citing Jackson) refers to the Mississippi population of six pairs in a 19.2 square mile forest that Tanner missed; the tract is less than 1/6 the area of the Singer Tract and is smaller than many contemporary wildlife management areas.

The tract, known as Allen Gray Estate, was west of Skene, Mississippi in Bolivar County; some or all of it is now part of Dahomey National Wildlife Refuge; the US Fish and Wildlife Service Habitat Management Plan for the refuge (2013) states that the forested portion of the refuge comprises 8100 acres and provides this historical information, “Dahomey NWR is located on the grounds of the old Dahomey Plantation founded in 1833 by F.G. Ellis and named after the homeland of his slaves. Much of the land west of the refuge was probably cleared for cultivation around this time. The land went through several owners and was purchased by Allen Gray in 1936. The portion that became the refuge was known as the “Allen Gray Woods”. This was the only significant portion of the plantation still forested.”  This 8100 acre figure is 25% lower than the figure reported by Jackson and Snyder.

While I have been unable to find a detailed logging history of Bolivar County, it is in the heart of the Mississippi Delta, which was known for its plantations. Between 1900 and 1940, Bolivar County was more densely populated than Madison Parish: 39.1 people per square mile as opposed to 18.9 in Madison Parish in 1900, 78.92 as opposed to 22.78 in 1930, and 74.57 as opposed to 28.33 in 1940. Based on population density and the number of towns, it seems self-evident that the habitat in Bolivar County was considerably more fragmented than was the Singer Tract.

Thus, there is good reason to question Tanner’s old growth model as well as the idea that large contiguous tracts of mature forest are required. Similarly, there’s good reason to question Snyder’s argument that hunting rather than specialization was the primary cause of the ivorybill’s collapse.

Efforts to reintroduce the beaver in the southeast began in the 1930s, and the population has been growing ever since. Beavers injure trees by partially or fully girdling them and by altering hydrology, which weakens or kills trees at the edges of the ponds they create. Beaver damage renders trees more vulnerable to infestation by ivorybill prey species, something we’ve observed repeatedly in our search area. In Tanner’s day and in the late 19th century, the beaver was barely a part of the southeastern ecosystem, but by the 1950s, beavers again were playing a role in altering southern forests, whether mature or successional.

If the ivorybill was able to survive the logging of the last large tracts of old growth forest, as I think it was, the reintroduction of the beaver may have been central to its persistence. If this hypothesis is valid, there is considerably more potential habitat today than there was in Tanner’s era; much of this potential habitat has been overlooked or dismissed in organized search efforts; and the dismissals of post-Tanner reports based on his habitat model rely, at least in part, on a false premise.




Scaling Data 2012-2016

To expand on some of the data included toward the end of the March trip report (which is worth reading in in conjunction with this post), I thought it would be informative to provide a season by season and sector by sector breakdown of the scaling I and others involved with Project Coyote have found since the spring of 2012. To do so, I’ve gone through my notes and photographs and have done my best to reconstruct the data collected. While not complete (I’m quite sure a good deal more scaling was found in Sector 3 during 2013-2014, for example), I think this breakdown is a fairly accurate reflection of what we’ve found over the years.

As discussed in previous posts, I think extensive scaling on hickory boles is the most compelling for Ivory-billed Woodpecker. Bark on this species is thick, dense, and usually remains very tight for a long time. Extensive scaling on sweet gum boles and oaks (upper boles and large branches) is second among work that I’ve found. Work on small boles, and higher and smaller branches is somewhat less compelling and is more significant for its abundance. Some of the high branch scaling and work on smaller boled sweet gums may well have been done by Pileated Woodpeckers (and possibly by Hairy Woodpeckers), but the abundance, the presence of large bark chips in many cases, the way it appears in clusters, and the fact that Pileateds scale infrequently suggest a different source for much of it.

I have excluded all work where squirrels are suspected but have counted one tree, a hickory found this year, on which the work could well have been that of a Hairy Woodpecker. Hairies do forage for Cerambycid beetles just under the bark, but they’re only capable of removing tight bark in small pieces; their work on hickories is perhaps more accurately described as excavation through the bark.

The trail cam images toward the end of this post are the best we have (out of many thousands of hours of coverage) showing how these species forage on suspected ivorybill feeding trees.

All trees were live or recently dead (twigs and sometimes leaves attached). All scaling was on live or recently dead wood.
Screen Shot 2016-06-08 at 8.09.41 AM

Sweet Gum (Liquidambar styracifula)

Sector 1:         46

Sector 2:         8

Sector 3:         51

                        105         (84.68%)        

~15% had scaling on boles (a few of these were large trees). The majority of work was on crowns, including larger branches. Fallen trees were included when woodpecker involvement was evident and bark was tight.

Bitternut Hickory (Carya cordiformis)

Sector 1:            3

Sector 2:            4

Sector 3:            7

                           14         (11.29%)

All trees were standing; scaling was on boles and was very extensive (the tree shown on the homepage is one example) with one exception from this year . Insect tunnels were visible in all examples. An additional hickory with a modest amount of high branch scaling was found in Sector 1 this year but was not counted for this analysis.

Oak (Quercus) spp.

Sector 1:         1

Sector 2:         4

Sector 3:         0

                         5         (4.03%)

All oaks had scaling on large branches; one also had some on the bole. All oaks in Sector 2 were found in a single cluster.

We have some information on forest composition in Sector 3, and it appears that sweet gums make up approximately 19%, oaks upwards of 35%, and hickories somewhere under 10%. Sectors 1 and 2 may differ and be more varied in overall composition.

The overwhelming preference for sweet gums relative to their abundance stands out. The scaled oaks are a mix of species, one Nuttall’s, one willow, the others unidentified.

In Sector 3, I am treating the compact stretch from the location of Frank Wiley’s sighting last spring/downed sweet gum top where we had the camera trap to just south of our current deployment as a cluster. The estimate of 23 trees being found in this area is conservative. I have only found one instance of recent scaling north of the location of the downed limb/Frank’s 2015 sighting. The main cluster has been in the same vicinity this year and last, with additional work scattered around farther south. Two of the hickories are within 30 yards of each other, approximately half a mile from the cluster, and one was on the edge of the concentration.

It also may be significant to note that we found a cluster of old but intriguing cavities in the same vicinity as the Sector 3 concentration in 2013-2014. Most of these seem to have fallen. The difficulty we’re having finding active, suggestive cavities is vexing, and may be the most compelling reason to be skeptical about the presence of ivorybills in the area. At the same time, finding Pileated cavities is difficult, even in defended home ranges.

I’m treating Sector 1 as a single concentration; the vast majority of the work is on a natural levee where sweet gums are abundant. The entire area is considerably larger than the other clusters, but given the abundance and ease with which we’ve found sign there over the last five seasons, I think it constitutes one area of concentration.

In Sector 2, there was a small cluster in the area where I recorded putative kent calls in 2013, with work found in 2012 (spring and fall) and 2013. Because the area is small with open sight lines, I can be confident there has been no recent work there since late in 2013 (I last passed through it with Tom Foti back in March of this year.)

The sweet gum work Tom and I found on that day was perhaps half a mile north of this cluster, within 100 yards of the hickory on the homepage. The other hickories found in the 2013 and 2014 seasons were not far away, no more than 500 yards apart as the crow flies.

There’s obviously some bias here, since there’s a relationship between finding feeding sign in a given area and spending time there. Nevertheless, I have little doubt that the putative ivorybill work tends to be clustered. I also have little doubt about the strong preference for sweet gums, since I’m not looking at tree species when I look for scaling. The degree to which sweet gums are favored has only become clear over the last year or so.

Frank pointed out this data does not reflect most of the scaling that likely exists in relatively close proximity to the Sector 3 cluster but cannot be quantified because it is in an area we have intermittently visited due to  inaccessibility. Only two or three examples are from this area, which has been visited a handful of times.


















Digging Deeper into Tanner, Part 2 of 3 – Foraging Substrates

Part 1 is here.

The second observation from the Singer Tract I want to discuss took place in May 1932, when Audubon Society President, T. Gilbert Pearson and Audubon Sanctuary Director Ernest G. Holt were the first ornithologists to observe Ivory-billed Woodpeckers (a minimum of three separate individuals) on the Singer Tract. As discussed in an earlier post, a newspaper account describes Pearson’s observations as follows: “The birds were feeding on stumps of rotting trees, the tops of which had been broken off. A favorite place for feeding is also on dead limbs at or near the tops of the very tall sweet gum trees found abundantly in this region.” It seems likely that some of these “stumps” broke due to having been weakened by larval infestation, although other factors undoubtedly were in play.

Pearson described his visit to the Singer Tract in Bird Lore (not available online) and included a photograph of the tree on which an ivorybill was first sighted. The tree has been heavily worked on by woodpeckers, and notwithstanding the poor quality of the image, the excavations look similar to some discussed in this speculative post.

Holt:Pearson Tree

Pearson’s observations present an interesting comparison with Tanner’s from later in the 1930s. Tanner wrote that “Ivory-bills in Louisiana usually feed high in the tops of dying trees, but they are not averse to coming close to the ground.” If there was any question, Tanner’s Plate 11 shows digging similar to that pictured by Pearson above and also shows that foraging occurred close to the ground.

(There are a couple of additional points of disagreement with my contributing biologist here. I think Pearson’s feeding tree is in a more advanced state of decay than the one shown in Plate 11; at the very least it has been far more heavily excavated. I also think that Pearson’s reference to “rotting stumps” implies a more advanced state of decay than what Tanner documented for Ivory-billed Woodpecker foraging at John’s Bayou while feeding young.)

Since Tanner’s monograph was published, a misunderstanding has arisen – that the Singer Tract birds were canopy specialists that rarely or never foraged on boles or near the ground. Tanner contributed to this misunderstanding after the publication of the monograph by dismissing reports of birds being flushed from near the ground and using this as one of his arguments for designating the species as extinct. If there was any doubt that Ivory-billed Woodpeckers foraged on boles (all the way to base), at least two of the four plates in the monograph (7 and 9) show scaled trunks; another (11) shows a hackberry bole (or stump) that has been scaled and excavated. Allen and Kellogg (1935) reported watching a female ivorybill foraging on the ground “like a Flicker”, and their photographs of foraging show feeding to near the ground on multiple small, rotting pines in Florida and on a “gum” in the Singer Tract.

Tanner did not quantify the frequency with which the Singer Tract birds foraged at different levels beyond saying that they “usually” fed high, but these remnant populations were clearly not averse to feeding low when circumstances required it, and as will become clear in the next post, there’s good reason to suspect that foraging lower on trees might have happened more frequently outside of breeding season.

In the back and forth leading up to this post, my interlocutor had an important insight. He suggested that some misunderstanding has arisen regarding the species of wood boring beetles that would be most important as prey for Ivory-billed Woodpeckers, at least during breeding season. Anecdoctal reports from many familiar with ivorybills, including Alexander Wilson and John James Audubon, have led to an emphasis on large Cerambycid larvae as a major prey item. Of the three Ivory-billed Woodpecker stomachs examined (p. 50), Cerambycid and other large beetle larvae made up high percentages of the animal matter identified in each stomach. It’s clear that ivorybills do feed extensively on large Cerambycid larvae and may prefer them at times, but as with all things ivorybill, nothing is straightforward. There will be more on this in the next post.

Tanner was the first and only observer to attempt to quantify at the availability of wood boring larvae and foraging substrates used by both Ivory-billed and Pileated woodpeckers. As I read Tanner, ivorybills, but not Pileateds, fed under the tight bark of dead on high limbs; both species feed on “hard but partly punky” stumps, and Pileated Woodpeckers (but not ivorybills) feed on “punky, and punky and rotten” limbs, stumps and logs.

I think Tanner was categorical about this in both the table and the text on p. 52. My contributor strongly disagrees and reads Tanner as not dismissing the possibility that ivorybills foraged on more decayed wood, including “punky and rotten” limbs, stumps, and logs, only that he did not observe this for the successfully reproducing Ivory-bills at John’s Bayou during his three year study.

Either way, crucial to the hypothesis that food was limiting to Ivorybills during the breeding season was Tanner’s sampling of wood boring insects among these three different substrates in the Singer Tract.

In May of 1939, Tanner did a survey in a freshly cutover area near Horseshoe Lake. He sampled eight .25 acre plots. He expressed some doubts about the data because he had difficulty finding dead limbs among the smashed tops but only to the extent that the “amount of Ivory-bill food discovered was undoubtedly less than was actually there” and the “calculated proportion of Pileated to Ivory-bill food was quite a bit greater than normal.” (pp. 50-51.) While two young birds were seen in the vicinity of Horseshoe Lake in 1932, this area was not in any of the home ranges delineated by Tanner, and he did find Cerambycid larvae under the bark of dead limbs that he apparently collected, presumably in non-random fashion, from downed wood in the John’s Bayou area. I’ll discuss these findings in the next post.

These caveats aside, the findings are dramatic because they seem to conflict with the observations mentioned above and even some of Tanner’s observations and data, particularly with respect to Cerambycid larvae.

The more decayed type of wood was over 12 times more abundant than the hard but punky stumps, the scarcest substrate in the sampled area but also the one with the highest relative abundance of Cerambycid larvae. Thus, this class seems to have offered by far the highest return on foraging investment, 237 cubic centimeters of insect volume in a mere 30 cubic feet of wood.

The higher, freshly dead limbs contained no Cerambycid larvae at all. Tanner estimated the total volume of insects for this class was 27 cubic centimeters in 80 square feet of foraging surface, a truly minuscule quantity. (He measured the surface area rather than the volume in this class.) The volume of insects in the most decayed substrates was 1154 cubic centimeters in 386 cubic feet of wood, abundant but not nearly as concentrated as in the “hard but punky” stumps.

This led Tanner to estimate that Pileated Woodpeckers in the Singer Tract had access to 40 times more food than ivorybills (p. 51) and to infer that this explained the much higher density of Pileateds (about 36 for each ivory-bill) there. I suspect that there’s another major factor that accounts in part for this difference.

I’m puzzled by the fact that Tanner never mentioned ants and termites when comparing ivorybills and pileateds. Long before he conducted his study, ants and termites had been documented as a primary Pileated Woodpecker prey species.

“F. E. L. Beal (1911) gave the results of examination of the contents of 80 stomachs collected far and wide throughout the range of the species . . . Beetles made up 22.01 percent of the total, and ants 39.91 percent. As many as 2,600 ants were counted in a single stomach. The ants were “mostly of the larger species that live in decaying timber.”

In another study of 23 PIWO specimens, also cited by Bent, ants comprised 60% of the stomach contents.


Pileated Woodpecker Feeding on Ants, Tensas NWR, 2010

There’s no evidence to suggest that ivorybills ever preyed on ants. Pileateds can gather and regurgitate ants, termites, and their larvae in great numbers, whereas Ivory-billed Woodpeckers must bring live beetle larvae to their young. It does not seem farfetched to suggest that the Pileated Woodpecker’s ability to exploit this abundant resource is a major reason for its relative success and that the ivorybill’s inability to exploit it could have been a major limiting factor on population and fecundity.

Tanner may have proceeded from the assumption that if there was competition between these two species, it would be for available “borers” (meaning beetle larvae), but the omission seems problematic and hence puzzling to me because it leaves a distorted picture of the degree of competition between the species and makes them seem more similar than they are in fact. It also skews the data Tanner presented and discussed on p. 51, since the volume of food available to Pileated Woodpeckers, but not ivorybills, in more decayed substrates would be substantially greater if ants were included.

There’s no reason to doubt Tanner’s observations with respect to high branch scaling, but it still seems paradoxical that the John’s Bayou birds “usually” foraged on parts of trees that apparently contained a lot less food. We’ll explore this paradox in more detail in the next installment.

Strips, Flakes, Chips, Chunks, and Slabs: Squirrels, Pileated Woodpeckers, and Ivorybills, Part 4

Careful examination of bark chips found in conjunction with extensive scaling is one of the key elements in our diagnostic gestalt, but “chips”, a term I’ve been using for years, is both inaccurate and too vague for what we believe is being left behind by Ivory-billed Woodpeckers and for differentiating it from the leavings of other animals. Tanner used “pieces” of bark, ranging “from the size of a “silver dollar to the size of “a man’s hand.” A caption from the National Geographic article on the 1935 Allen and Kellogg expedition that refers to “large chunks of bark”.  The existing images of these pieces of bark suggest that chunks is the better term.

It’s important to reiterate that this discussion applies only to live and freshly dead hardwoods. Pines slough bark quickly after death. The process is slower in hardwoods, but as decay progresses, the bark loosens considerably, with the rate of loosening depending on species and environmental conditions. Once the bark has loosened sufficiently, PIWOs can and do scale bark extensively, sometimes leaving behind large chips. In the images that follow (from Allen and Kellogg and Tanner), the bark chips ascribed to ivorybills appear to come from considerably longer dead trees than some of the examples we’ve found, but the images are informative.

Ivorybill Scaling Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

Ivorybill Scaling Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

The small tree shown above, identified as a “dead gum” by the 1935 expedition, appears to be a hackberry or sugarberry not a gum, and a fairly long dead one; the pieces of bark at the base resemble ones we found beneath hackberries or sugarberries in our old search area, some of which were considerably larger (the one below is the largest).


This colorized slide reveals more about the bark at the base of these pines than the black and white print in Tanner (Plate 9).

There’s also this example, (Plate 10 in Tanner), which appears to be in a considerably more advanced state of decay, and presumably looser, than much of the work we find most interesting. I suspect most of the grubs were placed on the chip for illustrative purposes; the caption “Beetle larvae from beneath bark of Nuttall’s oak” is ambiguous as to where the larvae, which appear to be small Cerambycidae, were actually found.

What I think is most salient in Tanner’s description of bark chips is shape not size. In this regard, it seems important to come up with a more specific set of terms to replace the commonly used “chips”. I’d suggest using chunks and slabs for suspected ivorybill work (although smaller pieces of bark may also be present). Pileated bark removal can involve chips, strips, or flakes, the last when they’re doing the layered scaling discussed here and here. I suspect that squirrels remove hardwood bark primarily or exclusively in strips, and of course, their bark removal on cypresses leaves shredded bark hanging from the trees.

Let’s take a closer look at the differences among pieces of bark we have reason to believe were left by squirrels, those we have reason to believe were left behind by Pileated Woodpeckers, and those we suspect were left behind by Ivory-billed Woodpeckers.

I collected a number of bark chips from the tree we know to have been scaled by a squirrel, and while these were removed before our camera trap revealed the source, there’s strong reason to think they too were left behind by squirrels.


Note the uniformly elongated shape and the ragged appearance at the tops and bottoms of these strips of bark. This is not typical of bark that we infer or know to have been removed by woodpeckers, and it’s consistent with chewing, not scaling. The presumed squirrel strips I collected had the following dimensions:






The downed sweet gum from which they had been removed was a fairly young tree, and the bark is much thinner than on more mature ones. These strips were approximately 1/8″ thick. While this is a very small sample, we suspect (along with Houston from that approximately 3″ is the upper limit for width when a squirrel is doing the bark removal.

Our research and observations suggest that Pileated Woodpeckers have two strategies for removing tight bark; one involves pecking around the edges until they can gradually pry off small pieces, and the other involves scaling away strips, sometimes in layers. Their physical structure precludes them from doing the extensive, clean scaling of tight bark that Tanner associated with ivorybills.

We suspect that this collection of chips, from a honey locust near a known Pileated nest, reflects the range of what the species is capable of doing on a tight-barked hardwood (and honey locust bark is relatively thin). The upper limit appears to be hand size, with many-quarter sized or smaller.


The following are measurements of some fairly typical suspected Pileated strips from a sweet gum:





The strips shown below, suspected Pileated Woodpecker leavings from a high branch, are on the large end of the spectrum for this category of work. The Peterson Guide is 9.5″ x 6.5″. I can’t rule squirrel out completely for these.


Flakes resemble strips, but they are removed in layers, so that reaching the sapwood is a gradual process. Pileated scaling frequently has this appearance, something that seems frequently to be the case with congeners, including the larger-billed Black Woodpecker (Dryocopus martius).



The chunks and slabs we suspect to be ivorybill work are significantly larger and thicker than strips, flakes and chips, although strips and chips may be present in the mix at the base of suspected feeding trees. Chunks are usually more irregular and varied in size and shape, and both chunks and slabs sometimes have what appear to be strike marks from a broad bill.

I kept one of the chunks scaled from the hickory tree on the homepage, a fairly typical example. It is 8.5″x3.5″ and .375″ thick. (It has undoubtedly lost some of its thickness after drying for over two years.)


The sweet gum chunk with the apparent bill mark Frank is holding is 7.5″x3″ and .25″ thick. On mature, thicker barked trees most or all suspected ivorybill chunks, chips, and slabs will have been removed cleanly, all the way down to the sapwood.

Frank adds:

This particular bark “chunk” is intriguing on several levels. We have found that markings many describe as “bill marks” are really truncated galleries between the bark and sapwood. Marks made by woodpecker bills are distinctive, but somewhat subtle, and easily overlooked. This chunk actually has two interesting markings – markings that were left by the animal that removed the bark. The first is near the end of my left thumb – my right index finger is pointing toward it. It is about a quarter inch wide, a bit over a half inch long, and three sixteenths of an inch or so thick. The other is a “V” shaped “notch” at the end of the chunk, near the center of the photo. These places look as if they’ve been struck with a chisel – hard enough to rip the bark away from the sapwood/cambium. This suggests that, even though this bark was very tight, very few strikes were required to loosen and remove it. Granted that these marks are bill strikes, this suggests that the bird removing bark is indeed a powerful animal for its size. Back to Mark.

DSC00031The two preceding examples are on the smaller side for suspected ivorybill work; in the first, the density, tightness, and grain of hickory bark seem to be a limiting factor on size. Some of the larger examples are shown in the Bark Chip Gallery (as are several of the images shown above). A couple of additional examples of larger slabs are below. In the first, the oak was approximately 8 months dead (leaves attached), and the bark was still tight. (The fractured slab was damaged in transit.)




Scaling and Squirrels: Part 2, Digging Deeper

Part 1 of this series is here, and the event that led to my writing it is discussed here.  I now expect to write 2-3 additional posts on this topic and may create a new page that summarizes the whole series. I’ve hidden the Bark Scaling Gallery page to be reworked later or incorporated into the summary.

This post will reiterate, revise, and expand upon earlier ones dealing with bark scaling and woodpecker anatomy. The next one will focus on certain characteristics of the scaling we think is being done by Ivory-billed Woodpeckers, on finer details that characterize it (based in part on comparison with work done by congeners), and on how to differentiate it from bark removal done by squirrels. The following entry will deal with bark chips in more depth, and from a slightly different angle than previous posts on that subject.

I had originally intended to address the next post’s planned content in this one, but as I started writing, I realized the long but necessary introduction would bury the lede. It soon became clear that I’d have to divide the post in two with this one for background.

The first important point is that woodpecker taxonomy is in a state of dramatic change, so much so that the American Ornithological Union is being advised to place Downy and Hairy Woodpeckers in separate genera and that their current genus, Picoides, should be divided into four. Notwithstanding the taxonomic upheaval, there’s no question that Campephilus woodpeckers and Dryocopus woodpeckers are only distantly related, that their similarities are the product of convergent evolution, and that these similarities are far more superficial – involving size and coloration – than structural or behavioral. Formerly, some incorrect taxonomic assumptions led to the lumping of Campephilus and Dryocopus into the “tribe” Camphelini, an idea that’s discussed and dismissed in the first paper linked to above. This has been one factor in perpetuating some fairly common and persistent misconceptions – that the two species are closely related, that they occupy or occupied the same ecological niche and might be competitors, and that hybridization might be possible (something I hear surprisingly often).

The following differences are relevant to this discussion:

  1. Bill size and shape. These are dramatically divergent as any comparison shot of specimens makes clear. It’s also worth noting that the three North American Campephili are closely related to each other. DNA analysis suggests the three are distinct species and the Cuban ivorybill may be more closely related to the Imperial Woodpecker than the mainland US species. This study suggested that divergence among the three took place between .08 and 1.6 million years ago. The southern members of the genus are more remote cousins, having diverged approximately 3.9 million years ago. At one time, the southern species were considered a distinct genus, and they have smaller bills, both objectively and relative to body size. Magellanic Woodpeckers have the smallest bills relative to body size in the genus, and their foraging behavior is more Dryocopus-like than their congeners’. DSC00866
  2. Neck length. The much longer neck of the ivorybill allows for a broader range of motion.
  3. Foot and leg structure. Campephilus woodpeckers have a unique variation on what have been called pamprodactylous feet. (Wikipedia and David Sibley both miss the vast difference between Campephilus foot structure and that of most other woodpeckers.) In this genus, the hallux (first) and fourth toe (the rear toes) are both on the outer edge of the foot; the toes can be rolled forward for climbing and backward for perching in a manner that looks more zygodactylous. (The preceding links to images of Sonny Boy, the juvenile ivorybill, and Kuhn are great illustrations.) The fourth toe is highly elongated, the longest toe on the foot, and the hallux, (in the ivorybill, the outermost toe) is relatively longer than in any climbing woodpecker species. The second and third (innermost toes) are angled inward. This is shown quite clearly in a number of the images from the Singer Tract, including Plate 13 in Tanner.

    Enlargement of image used for Tanner's Plate 13 showing foot structure. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

    Detail of Tanner’s Plate 13 showing foot structure. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

  4. Dryocopus woodpecker feet are closer to being truly zygodactylous – two in front, two behind, with limited mobility and the hallux as the inner rear toe, although the fourth toe can be rolled outward to some extent; this provides less stability when making lateral blows.

    Pileated Woodpecker foot showing zygodactylous structure and slight outward rotation of fourth toe. Photo courtesy of Carrie Griffis, who posted it on the Woodpeckers of the World Facebook group and kindly granted permission to include it here.

    In addition, Campephilus woodpeckers typically climb and forage with their legs both farther apart and higher relative to their bodies than Dryocopus. This enables them to keep their lower bodies closer to the trunk and move their upper bodies more freely, providing more stability for making powerful, lateral blows.

    4. Tail structure: the ivorybill’s tail feathers are long, thin, barb-like, and stiffer than the pileated’s. The tail serves as an anchor and also helps allow for a broader range of motion.


    Middle Tail Feathers: Flicker, Ivory-billed, and Hairy Woodpecker


    Pileated Woodpecker Tail Feathers. Note how the longest one resembles that of a Flicker more than that of an ivorybill.


    5. There other structural differences, including wing shape, but these are the main ones that point to how Ivory-billed Woodpeckers have evolved in a way that makes bark scaling their most efficient foraging modality, whereas Pileateds are far better suited to digging, using a perpendicular motion.

Much of the foregoing is based on Walter Bock’s  analysis of woodpecker adaptations for climbing, which was also discussed in depth here. I’ve tried to explain Bock’s key points in straightforward and less technical terms. A longer quote from Bock appears at the end of this post.*

In addition to these structural differences, Pileated Woodpeckers (and to the best of my knowledge all their congeners) regurgitate when feeding young. Campephilus woodpeckers carry food to the nest and appear to be highly dependent on beetle larvae when caring for their nestlings. This means that Pileated Woodpeckers have to ability to take advantage of multiple food sources during nesting season, while Ivory-bills have a more limited range of options. While I don’t think this supports Tanner’s theory of old-growth dependence, it does point to a higher degree of specialization that would impact numbers, range, and suitability of habitat.

At the same time, the anatomical differences and degree of specialization convince me that certain types of feeding sign are beyond the physical capacity of a Pileated Woodpecker and are likely diagnostic for Ivory-billed Woodpecker.

There is a dearth of clear images showing Ivory-billed Woodpecker feeding sign. There are a handful of photographs, most of them very poor. The majority were taken in the Singer Tract and some showing work on pines were taken in Florida by Allen and Kellogg.  Few of them depict the high branch work that Tanner described as being characteristic, and when they do, there’s virtually nothing that can be discerned from them. It is also not entirely clear that Tanner’s attribution of feeding sign to ivorybills was always based on direct observation, which makes us wonder whether some of the work might actually have been done by squirrels. Regardless, this makes it difficult to draw inferences from the existing body of imagery.

That said and with awareness of the perils in extrapolating, one lesser known image from the Singer Tract is worth comparing with the work on boles that’s been discussed in multiple posts.



“The Blind at Elm Rock”, Ivory-billed Woodpecker nest tree and detail showing scaling and excavation on trunk. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

This is a view of the 1935 nest tree, which was a red maple. It’s taken at a different angle than the more familiar shots, so it shows some large areas of scaling on the bole that the others do not. While I can do no more than infer that this was done by ivorybills, it’s clearly old, and there’s an abundance of excavation in the underlying wood; nevertheless, the edges and contours of the scaling are strikingly similar to the work we’ve found on boles, especially the area at the lower right, just above the intervening foliage.

This is the jagged appearance I described in the previous post; the similarities are most evident in the picture below and on the home page. ScalingNewArea

Because there are so few informative images of ivorybill feeding sign, the best available option is to look at the work of other Campephilus woodpeckers. Even though they are not as closely related as the Cuban ivorybill or the imperial, their morphology and foraging behaviors are similar; even the work of the smaller-billed but oft-photographed magellanic can provide some clues. I’ll examine this and some probable identifying features of squirrel scaling in the next post, which will take a close look at scaled patches on trees.

*”. . . in most woodpeckers, as, for example, the pileated woodpecker, the legs are held more or less beneath the body,the joints are doubled up,and the tarsus is held away from the tree trunk. This position of the legs is disadvantageous for the bird, because the body is held away from the tree trunk and the muscles of the leg are working at a mechanical disadvantage; the analogy is to the mountain climber who is standing on a narrow ledge with hand holds only beneath his chest. In the ivory-billed woodpecker, the legs are directed away from the center of the body, and the tarsus is pressed against the tree trunk. This method allows the body to be held close to the tree, with the joints of the leg extended. Hence the leg muscles have a mechanical advantage, because they are at the beginning of their contraction cycle and are acting along the length of the segments of the leg. When the body is held close to the trunk, it not only decreases the outward component of gravity but allows the tail feathers to be applied to the supporting surface for a greater distance from their tips. If the bird is climbing on smaller limbs, the feet can encircle the limb and thus obtain better support. However, no matter what size the limb is, the disposition of the legs and the spreading of the toes of the ivory-billed woodpecker furnish direct and powerful resistance to both the lateral and backward motions of the woodpecker when it is at work and, with the tail, furnish a tripodal base of great strength against the pull of gravity.”