Advertisements

Season’s Greetings and Singer Tract Conditions Revisited

Wishing everyone happy holidays and the best for 2019. While the blog has been quiet for a couple of months, the effort continues. A number of items are in the works, and I hope to have news about them in the coming months. And of course, I hope to be able to report on new encounters and new data. My long promised discussion of evidence and the standards applied to the ivorybill is still very much on my mind, but I’m not sure when I’ll be ready to tackle it here; the subject is complicated.

Meanwhile, I thought I’d repost the final section of a trip report posted in late winter 2016, for the benefit of new readers and those who might have missed it then. In retrospect, I buried some very important material at the end of a long post dealing with other matters. I think this content deserves more attention, since it is definitive with regard to conditions in the Singer Tract when Tanner was conducting his study and is more useful in that regard than either Tanner’s statements or Richard Pough’s report, which took issue with some of those statements and perhaps overstated the case in the other direction.

The next morning, I drove to the Wetlands and Aquatic Research Center (formerly the National Wetlands Research Center) in Lafayette and met with Wylie Barrow, Heather Baldwin, Tommy Michot, and Philip and Eric Vanbergen. (Two young enthusiasts who will be helping us out.) Frank joined us briefly, and then Wylie, Tommy, the Vanbergens, and I went out to lunch. It was an exciting and thought-provoking day, and the Research Center is an incredible facility. Wylie and Heather shared their comprehensive and in-depth analysis of conditions in the Singer Tract in Tanner’s day. They’ve amassed an array of materials encompassing land records, Civil War era maps, and stereographic aerial photographs. Their research far surpasses my own speculative effort. It covers the finest details – roads, improved and unimproved, snag densities, tree mortality, conditions around roost and nest sites, as well as conditions in other locations where ivorybills were seen. Tom Foti has done complementary research on hydrology, soils, and vegetation.

Their presentation convinced me that I’ve been too hard on Tanner in some respects. There was a little more old growth in the Singer Tract than I had inferred from the Pough report and some of the historical documents. Nonetheless, the characterization of the Tract as a whole as “virgin” forest is somewhat misleading, since over a quarter of it was second growth, and some of it fairly young. Heather and Wylie have graciously given me permission to summarize some of their findings.

When Tanner began his study, 72% of the Singer Tract was old growth. (Tanner estimated it at over 80%.) Logging in 1938 reduced that percentage to 67%. The ridges, which Tanner deemed to be the best ivorybill habitat, were actually the least likely areas to be old growth. (Tom Foti’s analysis also points to a preference for higher, drier locations.) The regrowth percentages for each landform in Tanner’s day are as follows:

Ridge (43%)

Low ridge (23%)

Total on ridges (32%)

Flat (9%)

Low flat (4%)

Cypress brake (4.5%)

For the most part, the second growth forests were not particularly old, as has been suggested in previous posts. According to Heather, most of these areas only started to regrow in the 1880s and 1890s, “due to consecutive depressions and low cotton prices”. Thus, parts of the Singer Tract were relatively young second growth, and this included one of the ivorybill home ranges and one that Tanner deemed to be “best” – Mack’s Bayou.

The nature of the habitat in the Mack’s Bayou area is immediately apparent from the 1938 aerial photos, which suggest forest conditions that are present in many parts of Louisiana today. Nevertheless, Ivory-billed Woodpeckers nested there in 1934 and 1935, at minimum, and did so successfully at least once. This fact alone refutes the idea that Ivory-billed Woodpeckers are old growth dependent. Heather informs me that there was an abundance of dead and dying trees on the eastern side of the Mack’s Bayou range, due to a fire caused by logging activities. In any event, the home range Tanner delineated in this primarily second growth area is no larger than the home range he delineated around John’s Bayou, which had more mature forest. In fact, the area he designated as “best” for ivorybills around Mack’s Bayou was slightly smaller than its older equivalent near John’s Bayou.

Tanner knew that a significant portion of the Mack’s Bayou home range was not old growth, since his 1941 map shows “old fields” in the heart of it. He seems to have been unaware of the resurgence of cotton growing during the 1870s and 1880s, so he may have overestimated the age of the forest on that basis. I can’t help but wonder if he glossed over the conditions in the Mack’s Bayou range in part for the sake of protecting the Singer Tract and (as Heather suggested) in part based on what he deemed to be best for the birds from a conservation standpoint, an approach that later ossified into a categorical set of beliefs about old-growth dependence.

As I and others have been arguing for years, extensive forest cover, sufficient dead and dying wood, and enough large trees for roosting and nesting are probably the main requirements, even if old growth or near-old growth conditions are optimal.

 

Advertisements

Singer Tract Area Ivorybills in 1948

Just over a year ago, I quoted at length from a 1949 letter to Tanner from Arthur MacMurray (a former student).  I’m reposting that transcript below and have some additional commentary. Eckelberry’s famous “last” John’s Bayou sighting in April 1944 has become a legend, even though Peterson, writing in 1948, had the lone female remaining at John’s Bayou until December 1946.

John’s Bayou aside, the MacMurray letter suggests that at least three ivorybills remained in the vicinity of the Singer Tract until the end of 1948, although not in the areas that Tanner studied. I read these reports as involving at least three birds because Willett mentioned a pair, whereas Williams and McCallip involve a lone bird. The Williams and Willett reports seem highly credible to me, given that Willett undoubtedly knew ivorybills and MacMurray seems to have trusted Williams’s ability to recognize the species.

I have tried to identify the locations involved. Little Fork Road still exists, south of Little Fork Bayou. It is west of the Tensas, about 10 miles northwest of John’s Bayou. North Lake #1 presented a challenge. The only North Lake I could find in the area is the North Lake Marydale Oilfield, which is in Tensas Parish, about 18 miles south-southwest of John’s Bayou and 20 miles south of Little Fork Road, just outside what is now Buckhorn Wildlife Management Area. While it’s possible that MacMurray (via Willett) was referring to a designation on a lumber company map (H. Baldwin, pers. comm.), it seems reasonable to infer that this is the North Lake referenced in the letter.

GoogleEarth_Image

It may be worth noting that as of 1943, a number of relatively small parcels in the vicinity of Little Fork Bayou, including the McCallip property, were not owned by Chicago Mill or Singer. Perhaps these parcels provided at least a temporary refuge, MacMurray’s reference to all he saw having been cut over notwithstanding. Perhaps this hints at how the remaining Singer Tract birds were dispersing or surviving in degraded habitat. Beyond that, there may be little to infer, except that while Eckelberry and the Fought boys’ “last sighting” was valid and makes for a moving story, its lastness is folklore.

***********************************************************************************

The Singer Tract has been cleaned of all its commercial timber as far as I could gather. No Ivorybills have been seen at John’s Bayou for at least three years, according to a resident who has lived adjacent to it for twenty-two years. ( . . . but he is on the lookout for them and remembers you.) John’s Bayou has a lumber railway passing thru it and passing all the way north to some point due west of Tallullah. The Ivorybills apparently left John’s Bayou soon after the large gum tree which had been their nest tree for several years was lumbered.

Mr. Gus Willett is still the local game warden. I phoned him. He expresses his best regards to you. He says that only one pair of Ivorybills are known to be in the region (seen in late November), having moved to North Lake #1. He says that whatever Ivorybills are left are apparently wandering over much larger areas than formerly. He says that all the old stands of gum tree are being lumbered now or very soon, so he thinks the prognosis for Ivorybills is dark and apt to be very brief. He doesn’t know whether or not Ivorybills have been found elsewhere in Louisiana or elsewhere in Florida in the past few years.

A friend of the gentleman who resides adjacent to John’s Bayou reported that he saw what he thought was an Ivorybill on E.C. McCallip’s property on the Little Fork Road 6 miles south of Waverly on December 17th of 1948. So Dot and I spent the night in Tallullah and visited McCallip’s place (minus boots – It was very muddy) All the land we saw looked cut over. There were lots of woodpeckers. Saw 5 Pileateds but none of their cousins. I questioned Mr. Ward Williams (address: Del Hi, Route 1, Box 184-A, Madison Parish, Louisiana) who recognizes Ivorybills and distinguishes between them and the “native” (pileated) peckerwoods. He claims to have seen an Ivory Bill there in November. He regards them as nesting residents and thinks he can find a nest of them there without very much hunting. I left my address, and he intends to write next time he sees a bird. He and his visitors were aware of Ivorybills having been at the Sharkey place adjacent (or in) to Singer Tract.

Dot and I found it expedient under the murky circumstances to proceed on to New Orleans for Xmas day.

. . .

Wish I had more optimistic new regarding the what kind of future we dealt the big-woods peckerwood.

Best Regards,

Arthur

 


Trip Report December 16-21, 2016, Part 1

On this trip, I was joined by Patricia Johnson (my wife) who was making her first visit to our search area in over two years. Phil Vanbergen was along on Friday, when a classmate of his, Jeremy Irion, spent also spent the day with us. Steve Pagans, retired forester at D’Arbonne National Wildlife Refuge, was very active in our efforts until he was sidelined with back trouble. He too made his first visit in over two years on Tuesday and Wednesday. It’s great to have Steve along for his birding skills and knowledge of this habitat type. Phil returned on Tuesday and Wednesday, and spent Thursday in the woods on his own. Frank Wiley was unable to get out this time around.

Prior to our departure, rain was predicted for three of our planned field days, but as it turned out, the weather was generally tolerable, if cold at times; Saturday was the only day when conditions, high winds and predicted thunderstorms, kept us away. Patricia and I took that day as an opportunity to visit Tensas National Wildlife Refuge (on the site of the Singer Tract) and Bayou Cocodrie National Wildlife Refuge. More on these visits below.

Although I didn’t have any possible encounters (Steve and Patricia’s will be discussed in Part 2), the trip was an incredibly productive one for me. We found a good deal of recent feeding sign. I also took the opportunity to look at over 10 hickories that have been scaled within the last several years. This is the type of work I think is most compelling for ivorybill.

I got what I think are some important new insights and some ideas about how whatever is stripping bark is behaving over time; these merit a separate post that will likely follow Part 2 of the trip report; I also anticipate writing an addendum to the feeding sign page I added recently. I hope these insights can inform our strategies going forward. It’s especially helpful to get fresh perspectives, so I’m grateful to Phil, Steve, and Patricia. Each in their own way helped me think a little more deeply about my observations; a conversation I had with Frank after a long day in the field was similarly helpful.

The groups of images in this post are in “tiled mosaic” format. Clicking on any single image will enable you to scroll through the group and enlarge the individual photographs if you choose to.

We met Phil on the edge of what we call Sector 1 at 6:45 am on the 16th. The weather was cloudy, cold, and windy; later in the day, the thermometer soared to nearly seventy, but the skies remained a wintry gray, less than ideal conditions for finding feeding sign or observing birds. Nevertheless we did find some recent work on both standing and downed sweetgums and on a broken hickory limb, all of this in an area where we’ve found an abundance of scaling every search season. None of this work is in the category I find most compelling; the hickory limb is probably most interesting due to the characteristics of hickory bark and the very large bark chip we found below the limb. Given what we’ve observed on hickory boles, this may be good target tree for later in the season.

The scaling on the downed limb has some features that might point toward Pileated, especially the layered appearance at the lower right and the patchiness of the work on the smaller limb. Conversely, the shredding of the cambium on the stub is consistent with what Edith Kuhn Whitehead told us her father associated with ivorybills.

Phil and I considered aiming a trail cam at the downed limbs but decided the work was not quite interesting enough.

The weather forecast for the 17th was ominous, with winds upwards of 20 mph and thunderstorms predicted for the afternoon. Patricia and I thought we might be able to spend a couple of hours in Sector 1, but when we reached the trailhead we found a truck parked where we were planning to walk in. Given the bad weather and the presence of hunters, we decided to head straight for Tensas, a pilgrimage I’d been wanting to make for some time.

The drive took a couple of hours, and our Wayz app sent us on a couple of roads that dead-ended in bean fields, but we finally made it, only to find the visitor center closed for the weekend.

imgp3885

We took a walk on the boardwalk behind the headquarters and found a dead tree that had been almost completely stripped of bark, large soft slabs of which were lying around the base. I’m posting a photograph to illustrate how difficult it can be to explain what we’re finding to those who haven’t seen it firsthand. I doubt there are ivorybills in Tensas, but if I found this work in our area, I wouldn’t suspect ivorybill. The remaining adhering bark is loose and decaying; the large slabs we found on the ground were soft and pliable. The tree in the background has a little bit of scaling on it too, but it is in an advanced state of decay, and the bark has not been removed from large, contiguous areas.

As we drove around Tensas, we did note occasional instances of high branch scaling, but nothing remotely suggestive. Again I’m again including these examples in hopes of providing more clarity with regard to the kinds of feeding sign I find suggestive for ivorybill; this work doesn’t qualify; it is on very small, longer dead limbs; it does not involve large, contiguous areas; nor does it reach the bole or larger parts of the limbs.

We spent a couple of hours exploring the refuge from the road, stopping at Africa Lake, on the West side of the Tensas River, and then drove Sharkey Road, stopping for a somber moment on the bridge over John’s Bayou. I’m facing south in the picture below; Tanner would have walked north to the core of the home range. There are strips of maturing woods along the banks of the bayou but bean fields to the east and west. Tensas is big, extensively wooded, and an impressive restoration effort is under way, but the visit left me saddened, with a more visceral sense of what was lost when the Singer Tract was logged.

From Tensas, we went to Bayou Cocodrie, a nearly 15,000 acre refuge that’s part of a large, east-central Louisiana potential habitat complex. While the corridors are not uninterrupted, they encompass many thousands of acres of maturing forest, from D’Arbonne and Tensas National Wildlife Refuges to Raccourci Island and Tunica Hills. There’s some connectivity with the Atchafalaya Basin as well. Bayou Cocodrie is fairly isolated and hard to reach (Wayz was unhelpful again); it includes a small (775 acre) stand of old growth hardwoods (the Fisher Tract), and there may be a good deal more surrounding forest that’s suitable for ivorybills. I met a professional hunting guide a couple of years ago, and he claimed to have had an encounter there. We’re planning to visit Bayou Cocodrie and see the Fisher Tract and surrounding areas on my next visit.

Patricia and I were on our own on the 18th, which was a much colder, clearer day after some early morning clouds broke up. We spent the early part of the day in the northeastern part of Sector 1 and didn’t find anything of interest. We went to the scaling concentration in Sector 3 in the latter part of the morning and stayed in the area until about 3 pm.

I didn’t notice any new scaling worth mentioning, but we found a limb that had fallen and broken apart in the storms that had raged through the night before. The scaling had been done before the branch fell, and except for one targeted dig, there was no associated excavation. While some of the bark had loosened, it was tight (impossible to remove without an implement) on the edges. I’ve included several images because they help illustrate the difference between the very extensive scaling we’re finding in our area and what’s common elsewhere (as shown in some of the Tensas photos). Patricia is 5’9″.

Stay tuned for Part 2.


Insights, Ants, and Old Growth: a Nuanced View of the Ivorybill’s Decline and Possible Survival

I’ve just finished reading Tanner’s dissertation and have gained some new insights into topics that have been discussed in a number of earlier posts.

Conventional wisdom, following Tanner, holds that the Ivory-billed Woodpecker’s decline and possible extinction were caused by habitat loss, specifically the logging of old growth forests during the 19th and early 20th centuries. Birdlife International’s fact sheet on the species suggests “that large contiguous tracts of mature woodland would be required to support a viable population”, referencing Jackson 2002. Snyder et al. have proposed an alternative hypothesis that “human depredation was the primary factor.”  (p.9).

Tanner’s model depends on the idea that food supply was the limiting factor on ivorybill populations, because the species is highly specialized, and that old growth conditions were optimal or essential. While Tanner was aware that ivorybills bred successfully in an area that was predominantly second growth, at Mack’s Bayou, he glossed over this fact in the monograph, and became more dogmatic about old growth as a requirement in later years.

Snyder and some others have contended that the ivorybill is a generalist. According to Snyder, “the data available on diet and foraging methods simply do not provide compelling evidence for strong feeding specialization.” Snyder goes on to suggest that “[i]ts apparent skill in exploiting recently dead timber, coupled with its ability to feed in a variety of other ways, may even have given it some significant foraging advantages over the pileated woodpecker, a species apparently much less capable of bark stripping. Indeed, the pileated woodpecker, like other Dryocopus woodpeckers, may well be more of a food specialist than any of the Campephilus woodpeckers.” (p. 37).

As I see it, there are elements of truth in both models, but neither is complete. In addition, I think that each model relies on at least one flawed premise.

The old growth/virgin forest component of Tanner’s model fails to account for the facts that the Singer Tract population was dwindling even before logging began in earnest and that birds appear to have remained in the Tract until well after it had been extensively logged. Tanner suggested another possibility, “perhaps the greatest factor reducing the rate of ivorybill reproduction is the failure of some birds to nest. One reason for their not breeding is immaturity, for it is probable that ivorybills do not nest until they are two years old. Another possibility is that the quantity of food available to the woodpeckers may determine whether they will nest or not.” (p. 83).

Tanner struggled to account for the fact that the ivorybill population at Singer was dwindling by the mid-1930s, even though overall habitat quality had, if anything, improved relative to what it had been a few decades earlier. He attributed the higher relative abundance in previous years to tree mortality due to fires that took place in 1917 and 1924. Tanner also recognized the probable importance of fire in the pre-contact era, although he seems to have been unaware of the ways pre-contact Native Americans used fire, both for agriculture and habitat management. (The impacts of Native American fire use were almost surely different from what occurred in the 20th century Singer Tract).

Neither Tanner (whose study predates the emergence of the discipline) nor Snyder, take environmental history sufficiently into account. There had been major ‘changes in the land’ long before large scale logging began in the southeast and before the reports of local abundance on which Snyder relies. These changes include: the post-contact collapse of Native American civilizations, the introduction of European plant and animal species, the clearing of log jams on major and secondary North American rivers, habitat fragmentation due to the plantation economy, and the near extirpation of the beaver.

All of these elements likely contributed to a major decline in ivorybill populations. Ivory-billed woodpeckers likely concentrated locally in response to major disturbances, regardless of whether forests were old-growth or advanced second-growth, and this type of specialization caused birds to congregate, making it easier for collectors to kill them in large numbers in short periods of time. Snyder likely misinterpreted this collection of large numbers of Ivory-bills in short periods of time as reflecting a greater regional abundance. In contrast, and more consistent with Tanner, this ecological response to disturbed areas led, in some places, to the collectors extirpating regional populations.

In the latter part of the 19th century, hunting probably sped the collapse of the remaining population, but Snyder’s claim that available data on diet and foraging methods do not provide compelling evidence of specialization fails to account for the anatomical and other evidence that suggests otherwise. It also fails to account for the Pileated Woodpecker’s far more extensive range and ability to thrive in a wider variety of habitats, including badly fragmented and degraded ones. I made some of the case for specialization in a series of recent posts, but there’s more to add, especially with regard to ants.

In one of those posts, I hypothesized that the inability to exploit ants as a food resource was a key component, perhaps the primary component, in explaining the decline of the ivorybill. A commenter asked whether there’s evidence to support the idea that ivorybills and other Campephilus woodpeckers don’t feed on ants and also whether there’s evidence to support the idea that Campephilus woodpeckers don’t regurgitate.

Adult Campephilus woodpeckers rarely feed on ants but do not feed them to their young. They make frequent trips to the nest with food items stored in the bill or at the back of the bill. (M. Lammertink, pers. comm.) Dryocopus woodpeckers and those in closely related genera (the “tribe” Malarpicini) feed their young by regurgitating, while other woodpeckers do not. (Manegold and Topfer, 2012). I think the capacity of Pileated Woodpeckers to consume ants in large quantities and to feed them to their young is a significant distinguishing factor and that Tanner was correct in suggesting that food supply was a major limiting factor on Ivory-billed Woodpecker populations.

Ants comprise up to 33% of the world’s terrestrial animal biomass. In Finland, they comprise as much as 10%. In tropical forests, the percentage is much higher, exceeding vertebrate biomass by 400%. Tanner’s comparative analysis of available ivorybill and pileated food did not include ants, so Tanner’s comparative estimate of available insect prey – suggesting that pileateds in the Singer Tract had access to approximately four times what ivorybills did – was in fact extremely low.

Tanner’s dissertation concludes with a discussion of Audubon’s ivorybill dissection, something that was omitted from the monograph. While I had a passing familiarity with the Audubon material, I had not looked at it carefully. Nor had I compared his ivorybill and pileated dissections.

Tanner wrote: “The proventriculus is both muscular and glandular. Audubon’s drawings and text indicate that the proventriculus of a Pileated is much larger in proportion to the stomach than is the case in the Ivory-bill.” Audubon described the ivorybill proventriculus as being only minimally wider than the esophagus. By contrast, the pileated proventriculus as “an immense sac, resembling a crop, 2 1/4 inches in length and 1 and 5 twelfths in width,” or nearly three times as wide as the esophagus.

Screen Shot 2016-07-11 at 1.47.01 PM

Audubon’s drawing of Ivory-billed Woodpecker digestive tract showing slightly widened proventriculus.

Screen Shot 2016-07-11 at 1.47.28 PM

Audubon’s drawing of Pileated Woodpecker digestive tract showing large, sac-like proventriculus.

The proventriculus and stomach of one of Audubon’s specimens contained “a vast mass of ants and other insects”. According to Bent, Beal found one pileated stomach that contained 2,600 ants. (Others contained fewer, 153 and 469, according to Sutton.) Thus, it’s clear that even if ivorybills sometimes ate ants, they lacked the capacity to consume them in large quantities, let alone feed them to their young.

This supports Tanner’s view that specialization was a limiting factor on ivorybill populations. I’ve previously suggested that this might apply only to breeding season, but it seems reasonable to infer that it’s a factor year-round, based on the differences in proventricular structure.

All of that said, I’d argue that this specialization should not necessarily be read to include dependence on large tracts of mature, contiguous forest. The data from the Singer Tract suggest that even under these ‘optimal’ conditions, breeding was limited. And the fact that the Mack’s Bayou birds bred successfully in an area of second growth suggests that birds could thrive under ‘suboptimal’ conditions. The extent to which survival might be possible in fragmented habitat is less clear, but Snyder (citing Jackson) refers to the Mississippi population of six pairs in a 19.2 square mile forest that Tanner missed; the tract is less than 1/6 the area of the Singer Tract and is smaller than many contemporary wildlife management areas.

The tract, known as Allen Gray Estate, was west of Skene, Mississippi in Bolivar County; some or all of it is now part of Dahomey National Wildlife Refuge; the US Fish and Wildlife Service Habitat Management Plan for the refuge (2013) states that the forested portion of the refuge comprises 8100 acres and provides this historical information, “Dahomey NWR is located on the grounds of the old Dahomey Plantation founded in 1833 by F.G. Ellis and named after the homeland of his slaves. Much of the land west of the refuge was probably cleared for cultivation around this time. The land went through several owners and was purchased by Allen Gray in 1936. The portion that became the refuge was known as the “Allen Gray Woods”. This was the only significant portion of the plantation still forested.”  This 8100 acre figure is 25% lower than the figure reported by Jackson and Snyder.

While I have been unable to find a detailed logging history of Bolivar County, it is in the heart of the Mississippi Delta, which was known for its plantations. Between 1900 and 1940, Bolivar County was more densely populated than Madison Parish: 39.1 people per square mile as opposed to 18.9 in Madison Parish in 1900, 78.92 as opposed to 22.78 in 1930, and 74.57 as opposed to 28.33 in 1940. Based on population density and the number of towns, it seems self-evident that the habitat in Bolivar County was considerably more fragmented than was the Singer Tract.

Thus, there is good reason to question Tanner’s old growth model as well as the idea that large contiguous tracts of mature forest are required. Similarly, there’s good reason to question Snyder’s argument that hunting rather than specialization was the primary cause of the ivorybill’s collapse.

Efforts to reintroduce the beaver in the southeast began in the 1930s, and the population has been growing ever since. Beavers injure trees by partially or fully girdling them and by altering hydrology, which weakens or kills trees at the edges of the ponds they create. Beaver damage renders trees more vulnerable to infestation by ivorybill prey species, something we’ve observed repeatedly in our search area. In Tanner’s day and in the late 19th century, the beaver was barely a part of the southeastern ecosystem, but by the 1950s, beavers again were playing a role in altering southern forests, whether mature or successional.

If the ivorybill was able to survive the logging of the last large tracts of old growth forest, as I think it was, the reintroduction of the beaver may have been central to its persistence. If this hypothesis is valid, there is considerably more potential habitat today than there was in Tanner’s era; much of this potential habitat has been overlooked or dismissed in organized search efforts; and the dismissals of post-Tanner reports based on his habitat model rely, at least in part, on a false premise.

 

 

 


Old Singer Tract Images Compared with Two More Recent Ones (from Elsewhere)

1967 slides taken by Neal Wright of a putative Ivory-billed Woodpecker in Texas are viewable on Vireo (search Ivory-billed Woodpecker), but high resolution scans have not been widely circulated as far as I know. These images were not made public until after the the Arkansas “rediscovery”, more than three decades after they were obtained. Wright’s story is mentioned in Jackson (2004) “Reynard saw the photo and said that it was fuzzy but definitely of a Campephilus woodpecker.” It’s clear from the context that Jackson had not seen the images at the time of writing.

When I first encountered the Wright slides, I was skeptical, but after seeing some lesser-known Singer Tract photographs as well as other images of Campephilus woodpeckers in cavities, my opinion started to shift. After finding additional ivorybill photographs in the Cornell archives and in Tanner’s dissertation, I thought it would be worth posting some of those images along with one of Wright’s slides for the sake of comparison.

Of course, it’s up to readers to draw their own conclusions, but I think a few things are worthy of note. First, the Wright slides were taken long before the internet, at a time when the only readily available image of an ivorybill in a nest cavity was Tanner’s Plate 1, which is quite similar to Fig. 43b (below). The posture of Wright’s bird is much closer to the ones shown in the then virtually unknown and/or unpublished images, especially those from the 1938 nest. The placement of the cavity is also strikingly similar, just below a major fork. It seems highly unlikely that Wright would have been aware of obscure Singer Tract photographs.

While the image quality is too poor to be certain, there appears to be excavation similar to work found on some Singer Tract nest and roost trees to the right of the nest cavity in Wright’s slide. Again, this is a fine detail that would likely have been unknown to Wright and that would have been difficult to fabricate.

These are very poor quality images; the malar stripe seems a little too extensive, although this could easily be a function of angle and lighting. As with the Fielding Lewis photographs, which were taken several years later, I have to wonder why anyone intent on committing a hoax wouldn’t do a better job. And in the case of the Wright pictures, it would make more sense if the template for such a hoax would have been Plate 1 in Tanner, rather than photos that were unknown to all but a handful of people, most of them at a northeastern university.

Finally, I think the fact that the images were turned over to an ornithologist (George Reynard, scroll down for his obituary) but were kept confidential for so long also tends to support the idea that they’re authentic. Neal Wright may have had an agenda – a desire to protect the area where he took the picture – but the images were not used to serve that purpose.

Edited to add: This fascinating article on a recent, non-ivorybill related hoax suggests that it’s not uncommon for hoaxes to be paradoxically uneven in quality, and that hoaxers’ motives can be murky and bizarre. Nonetheless, I think that other factors point to authenticity for both the Wright and Lewis photos.

Ivory-billed Woodpecker w16-1-001 copy

© N. Wright/VIREO USA – Nest with adult protruding, slide mount dated 5/70 (apparently the duplication date). Poorly defined bird is apparently peering out of a cavity in the upper left of the trunk, below the fork.

Screen Shot 2016-06-14 at 10.07.18 AM

Ivorybills at Nest, John’s Bayou 1938, female’s head protruding from cavity

IMG_1119 (1)

Ivorybills at Nest, John’s Bayou, 1935, male’s head protruding from cavity

 

NestHolePix copy

Images from the Singer Tract and James T. Tanner’s Dissertation Courtesy of Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

 

Another item I found in Tanner’s dissertation merits comparison with one of Project Coyote’s camera trap photos, since the tree species involved are the same. Plate 7 in Tanner shows ivorybill feeding sign on honey locusts, but the reproduction in the monograph is very dark. The figure from the dissertation is much brighter, making it clearer what Tanner was attempting to show. I think the similarity to the work on our target tree, where I had a sighting a week prior to the capture, is striking.

Screen Shot 2016-06-14 at 11.04.21 AM copy

Courtesy of the Rare and Manuscript Division, Cornell University Libraries

IMG_3547 Red Box

Trail cam photo with scaled tree in the foreground and suspected female Ivory-billed Woodpecker in red box, Nov. 2009

To enlarge the trail cam photo, click here.


Two More Rare Ivory-billed Woodpecker Images

These two photographs, taken by Tanner in 1938 and published in his dissertation, have not been otherwise widely disseminated or (to the best of my knowledge) reprinted elsewhere. Each is interesting in its own right, and not just because they add to the small body of indisputable ivorybill imagery; the first shows the behavior of a near-fledgling (Sonny Boy) in the nest and the second for the position of the male’s crest, which is more recurved than in most or all other stills. Another series of rare images is here. Images are Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library. Screen Shot 2016-05-03 at 1.39.32 PMScreen Shot 2016-05-03 at 1.40.39 PM


Rare Ivory-billed Woodpecker Images

 

 

My visits to Cornell’s Kroch Library, where the Rare and Manuscript Collections are housed, have been very productive. In addition to the last letter to Tanner pertaining to the Singer Tract ivorybills quoted at length here, I’ve come across several little known ivorybill images, some better quality reproductions of the plates in Tanner, and some additional hints about ivorybill foraging excavations that I’ll discuss in a future post. I suspect that all of the images below are actually stills from the 1935 film footage that has been lost save for a few minutes. To see it, go here and start at 14:00. To the best of my knowledge, these images have not previously been published as stills, and a couple of the frames may never have been publicly available.

The first image is similar to the one that appears on Page 82 0f  The Race to Save the Lord God Bird.  This is a sequence (that apparently has been lost) in which the birds are changing places on the nest. A third image that follows the first two appears on p. 120 of The Race . . . A colorized version, at once gorgeous and crude and sadly somewhat damaged, is also included here; it’s reproduced in black and white in Jackson (p. 27).

I think the bird in the remaining frames is the male. In the second frame, he may be engaging in the motion described by Tanner, “. . . jerking as though working food from the back of its mouth.” the next frame shows the him peering into the cavity. These two images are clips from the surviving footage. The final shot may have come from a lost piece of film, since a remaining clip, filmed from a similar angle doesn’t include it.

In addition to the images posted below, two figures in Tanner’s dissertation include unpublished photos from 1938 – one of a male at the nest cavity and the other of a juvenile peering out of it. Those images may also be included in a future post. All four pictures below were taken with my iPhone. I have a high resolution scan of the fourth on order, since it is one of the best representations of presumed ivorybill excavation available. Images are Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library.

 

 

IMG_1119 (1)

IMG_1130

IMG_1116 (1)

IMG_1120 (1)IMG_1122 (1)


Digging Deeper into Tanner, Part 3 of 3 – Prey Species

Part 1 is here. Part 2 is here.

At an IBWO Recovery Team meeting during 2007, a report was shared by Dr. Nathan Schiff and his colleagues at the USDA Forest Service’s Southern Hardwoods Laboratory that more formally described many of the paradoxes that have been discussed in this series of posts. It provides more information on what is known today about the ecology of the wood boring species documented as having been fed upon by Ivory-billed Woodpeckers. Schiff and his colleagues point out that the larvae Tanner collected from a John’s Bayou nest cavity and those described from stomach contents don’t prefer sweetgums, don’t live in high branches, and spend the bulk of their lives in the heartwood, often in the lower parts of trees.

While it’s not mentioned in the Schiff et al. paper, Mallodon dasytomus or what Tanner called Stenodontes (by far the largest single food source in his sample of remains from the nest cavity described above) is commonly known as the “hardwood stump borer”, and Neandra brunnea, a close relative of another known prey species, Parandra (or Hesperandra polita), is called the “pole borer”. These beetles have a life cycle of 3-4 years.

The authors point to direct evidence that of the six species of insect identified in Tanner’s monograph, none would use wood consistent with the high branch/sweet gum focused foraging model. In addition to Mallodon, and P. polita, these species are: Neoclytus caprea (banded ash borer), Dynastes tityus (Eastern Hercules beetle), Alaus ocualtus (eyed click beetle) or a close relative, and an unidentified Scolytid or bark beetle (not found by Tanner.) We have found both P. polita and A. oculatus adults on suspected feeding trees.

Scolytids are tiny. Neoclytus begins its one year life cycle in early spring; the larvae start feeding under the bark and then burrow into the sapwood, where they pupate and spend the winter before emerging as adults. The species prefers ash but may also occur in hickory, oak, and elm. It is found in downed logs, as well as standing trunks and limbs of stressed to dead trees. Dynastes tityus or Hercules beetle larvae live and feed in the “rotting heartwood of logs and stumps.” Alaus larvae are predatory on Cerambycid larvae and live in decaying stumps and logs; eggs are laid in the ground. In addition, the authors point out that at least some of the larvae Tanner found under bark on higher branches (p. 42) require wood that’s in an advanced state of decay, when bark would be loose.

The insect larvae identified for Tanner (Mallodon, Alaus, Neoclytus, and Dynastes) came from remains he found in nest debris. I think this suggests he may have failed to observe or have unduly downplayed one or more foraging behaviors related to obtaining food for nestlings – excavation of very decayed stumps and logs and extensive scaling on boles in particular – since these are lower dwelling species and two of the four inhabit wood that’s in an advanced state of decay. My anonymous correspondent disagrees with my reading of Tanner but makes a very interesting observation that sheds important new light on the data.

Schiff et al. point to an apparent contradiction; none of the food items found in the nest reflect the preference for high branch foraging that Tanner described. The importance of large Cerambycid larvae (especially Mallodon or Stenodontes dasytomus) in the feeding of young ivorybills at Singer Tract remains unclear. Tanner’s observations indicate that most foraging events involved a substrate (recently dead or dying branches) that doesn’t support these large wood-boring larvae. Tanner reported that Mallodon and other large larvae that were “frequently carried in the bills of adult Ivory-bills”. Some fragments of larvae that were found in the remains of at least one nest cavity had to have come from boles or large, lower branches and were likely to have been obtained from longer dead wood, at least in some cases.

It appears that attention today on the Cerambycid larvae “paradox” may have been founded in part on a misreading of Tanner. The Cerambycid and other large larvae found in the three stomachs reported above were from birds collected in August and November, well after the breeding season. Because Mallodon is so large, was the most abundant prey species found in the nest, was identified in one of the stomachs, and was quite likely the species found by Wilson and others, many have interpreted Tanner as saying that it was the primary prey species. It was undoubtedly an important and calorically rich one, but Tanner’s observations suggest that smaller larvae played a more important role, at least in the case of the John’s Bayou birds.

While he frequently saw adult ivorybills carrying large larvae in their beaks, he observed the birds carrying large numbers of “small” larvae even more frequently. He noted the apparent conflict between his observations and what was found in the nest debris and resolved it by hypothesizing that the smaller insect parts probably remained “imbedded in the feces” and were “removed when the adults cleaned the nest” (pp.40-41). Thus, while there is direct evidence that large wood borer larvae were part of the ivorybill prey base, Tanner’s overall interpretation was that smaller larvae were more important during the breeding season. (pp. 40-41, 51-52).

Tanner admitted that he did not fully understand why ivorybills did not forage more frequently on substrates supporting larger larvae when they were fully capable of doing so. He speculated that the smaller larval woodborers when abundant “are very abundant” for short periods of time, beneath the bark of recently dead or dying wood. In sum, Tanner concluded “The Ivory-bill’s insect food supply is smaller, more variable and erratic, and more unevenly distributed than that of the Pileated.”

To reiterate, Tanner stated specifically that while most of his observations involved scaling of high branches, presumably for smaller larvae, he also observed scaling on boles where larger larvae dwell. Tanner suggested that foraging on trunks took place when trees were “longer dead” and that ivorybills “move downward with the progression of shallow borers” (p. 41) The balance of his observations (27.8%, a not inconsequential number) involved digging for “deeper-living” larvae that spend most of their lives in the heartwood, between the ground and the large lower branches.

In their unpublished manuscript, Schiff et al. concluded that: the “. . . Ivory-billed Woodpecker is an opportunistic feeder with catholic tastes that eats beetle larvae where it can find them and that it probably digs for them with its powerful bill. ” This conclusion was intended to challenge Tanner’s finding that food supply imposed a limitation on ivorybill nesting success, but a close reading of Tanner suggests this conclusion actually is not at variance. It is clear now that Ivory-billed Woodpeckers could and did forage by digging into older boles like Pileateds, though less frequently. It is also clear that they scaled bark at all levels. The new revelation for many of those interested in ivorybills today is that this species showed a preference for stripping bark in pursuit of large numbers of smaller larvae in recently dead and dying trees and carried these smaller larvae en masse to their young.

I think the foregoing observations make a lot of sense. As discussed, perhaps ad nauseaum, I have some doubts about what I take to be Tanner’s conclusions about decay class. I have questions about the way he characterized his data on tree size and wish he had quantified scaling on branches relative to scaling on boles. I also question his suggestion that scaling on boles was done on longer dead trees (and the rationale that trees die from the top down) because it doesn’t account for the fact that the larger bole dwelling Cerambycids can attack injured live trees and hasten or bring about mortality, as was the case with the suspected feeding tree shown on the homepage. I have little doubt about his observations at the nest. For one thing, the number of is considerably greater, 159 as opposed to 101.

There is some reason to think Tanner was at least partly correct with respect to variability and scarcity of this food supply, especially in the higher branches. As noted in the previous post, Tanner found no Cerambycid larvae at all in a random sampling of cutover plots near Horseshoe Lake. The location of these surveys was likely between the Bayou Despair and Greenlea Bend home ranges and not far from where two young birds were seen in 1932. Ivorybills were disappearing from these two home ranges, as well as from the nearby Little Bear Lake range, and the three ranges only produced one successful nest (Greenlea Bend, 1937) between 1934 and 1939. (p. 39), and it seems possible that scarcity of this food supply was a contributing factor.

Tanner specifically looked for insect larvae “from several situations similar to places where ivorybills fed”. This was presumably not a random sample. While details about these “situations” were not provided, they included: under bark of dead sweet gum and willow oak limbs (presumably downed), under the bark of a Nuttall’s oak (condition and part of tree unspecified but presumably a downed limb or limbs based on the species found), and the trunk of a dead hackberry. As might be expected, he found Mallodon, P. brunnea, and A. oculatus in the hackberry bole.

He found Urographis (now Graphisurus) fasciatus and Leptostylus sp. in both species of oak and in the sweet gum. These are small Cerambycids (adults up to 15 mm). He found small Cerambycids, Aegomorphus decipiens (now modestus) under sweet gum bark and Xylotrechus colonus under the willow oak bark. In addition, he found Pyrochroidae (torch beetle) larvae, possibly Dendroides canadensis, in sweet gum and Nuttall’s oak and unidentified Elaterids and Buprestids in the Nuttall’s oak.

Questions remain. Some of these larvae, the Elaterids and Pyrochroids in particular, are found under loose bark in decayed wood, suggesting that at least some of the infestation took place after the limbs Tanner examined had fallen. Aegomorphus also feeds in “soft, decaying hardwoods.”  Graphisurus fasciatus is a common species that prefers trunks and large branches. Xylotrechus colonus, prefers “recently killed trees” and is described as “one of the commonest eastern Cerambycids”. At the same time, Tanner’s very limited random sample suggested that high branches had considerably less available substrate and food than other tree parts. This may suggest that sporadic, localized outbreaks of larval infestation in high branches are crucial for breeding.

There are a couple of added twists to this story. To restate and expand on the foundation of my hypothesis about diagnostic feeding sign: Campephilus anatomy, and especially that of the northern triad (Imperial, Cuban ivorybill, and U.S. ivorybill), is highly specialized. Members of this genus are built to scale bark with greater speed and efficiency than any other woodpecker species, but they are also certainly capable of digging. When they dig, they may be powerful, but I suspect their morphology makes excavation a less efficient foraging strategy.

In contrast to Pileated Woodpeckers, which have evolved to make perpendicular blows, ivorybills have pamprodactylous feet (an evolutionary adaptation that rivals the opposable thumb in terms of how radically it differs from other picids), longer necks, longer, stiffer tails, and larger, broader bills. All these adaptations enable them to deliver strong lateral blows but probably impact their ability to excavate. This may explain why many of the foraging pits shown in the Pearson photograph and in Plate 11 are skewed and why ivorybill nest cavities are asymmetrical. It might also explain why ivorybills dig relatively infrequently during breeding season and instead undertake long daily circuits to strip bark and gather larvae, both large and small, for their young.

Ivory-billed Woodpeckers don’t eat ants or termites and don’t regurgitate. They must obtain live, and when possible large, beetle larvae or large quantities of smaller ones. It’s beyond dispute that they do this most often by scaling bark and finding these insects at or near the exposed wood. Based on the presence of Neoclytus in the nest, it’s reasonable to infer that some prey species are taken early in the life cycle, before they burrow into the heartwood, while others simply live under bark. In addition, several species (Mallodon and H. polita at least) may be exposed when bark is stripped from the bole and their larvae are digging exit tunnels but have not yet sealed their pupation chambers. This is the time when the larvae are largest and most nutritious. This is the substrate in which Tanner found the highest concentration of food, and ivorybills are uniquely adapted for exploiting this opportunity. I believe we have seen evidence of this behavior on some hickories, sweet gums, and oaks in our search area.

One or both of these foraging strategies may be keystones. Fluctuations in the availability of these particular food sources might have a significant impact on nesting success.

Whether or not I’m exactly right about all this, I think there are several important points that deserve to be reiterated.

  1. The Singer Tract ivorybills “usually” or frequently fed on high, freshly dead sweet gum and Nuttall oak branches; what they were feeding on remains unclear; however, there is no doubt about the importance of the prey collected (whatever it was) at the treetops for raising young. Specifically, on April 23, 1939, Tanner observed both adults feeding “Baby Bunting” from prey captured from the top of a dead pecan (hickory), and also the long flights these three, along with “Sonny Boy” (the previous year’s young, still with adults), made from one foraging tree to another. There is also no reason to doubt that prey from treetops made up a substantial part of what was fed to the young before fledging.
  2. Ivory-billed Woodpeckers in the Singer Tract could and did feed at all levels and on wood in all stages of decay, but during breeding season, at least, they took most advantage of more recently dead and dying trees.
  3. Despite the habitat and tree species preferences documented by Tanner during the 1930s, the last few ivorybills could and did feed in areas and on tree species that Tanner did not document as being heavily used during his study. This was mostly in the 1940s, after massive cutting was under way. Subsequent interpreters of Tanner have inferred that these tree species and areas were unimportant or unsuitable, and some of Tanner’s later statements may have abetted this misunderstanding. The takeaway is that ivorybills will feed on a variety of tree species, provided the trees are stressed and infested with wood boring larvae that can be quickly collected by scaling bark.
  4. Prey species were most heavily concentrated in what Tanner called “hard but partly punky” stumps. Though it’s not explicitly stated, this class is likely to include the boles and large lower branches of standing trees, including Cerambycid infested trees that have not yet succumbed.
  5. Despite popular perceptions, large trees are not a requirement. Notwithstanding our disagreement about how to characterize foraging frequencies and size class explored at length in the first post in this series, my collaborator and I agree that insect abundance, not tree size per se, is the most significant factor. The foraging behavior documented by Allen and Kellogg and the nesting successes in mostly second growth but fire damaged forest (Mack’s Bayou) earlier in the 1930s support this interpretation.

I hope this series of posts will prove useful to other searches and that it provides greater clarity about ivorybill foraging behavior.

Addendum, March 26: A biologist wrote to point out that I may have been regurgitating conventional wisdom on the subject of Campephilus regurgitation. Some of the literature states that they do feed their young in this manner, and there is language in Tanner to suggest this may be so for ivorybills (pp. 74-75). “Often it seemed to be jerking as if working food from the back of its mouth.” As I read Tanner, the number of larvae that may have been regurgitated seems small, a single grub in at least one instance. The passage in Allen and Kellogg (mentioned in the comments) involved termites, and it is highly speculative. And I recall reading that ivorybills were hunted for food specifically because they didn’t taste of formic acid, unlike pileateds.

At present, I don’t think this information calls for a major revision of the hypotheses presented here, but I plan to do some additional research and may have more to say on these subjects in future. I’ll be completing a week in the field today and expect to post a trip report before too long. As a preview, I’ve found an unprecedented quantity of recent high branch and upper bole scaling this week, all of it on sweet gums.


Digging Deeper into Tanner: Part 1 of 3 – Tree Size

Although it is thematically quite different, this series of posts is rooted in my recent reexamination of my feeding sign hypothesis that culminates here. It was also inspired by my recent and much closer look at Tanner and the Singer Tract, new insights gleaned from old material, and the input of others that shaped the previous post. My original plan was to make this entry the last in the previous series, but since it has grown to over 5,000 words and addresses different issues, I decided to break it in three and will post the next two installments soon.

I’ve been engaged in an extended dialog with a biologist who is familiar with all the Ivory-billed Woodpecker literature and knows Tanner’s writings specifically. Our back and forth is the primary reason for the long interval between the previous post and this one. This person provided some very important insights that will be included in these posts. At the same time, we have a few points of disagreement. In the interests of transparency and allowing readers to draw their own conclusions, these points of disagreement will be disclosed in the text.

Ivory-billed Woodpecker foraging behavior and diet and what separates this species from Pileated Woodpecker and other North American woodpeckers are issues that have been hotly contested for years. In my view, ivorybills could (and presumably do) forage on any species of tree in any decay condition. However, Campephilus anatomy is specialized, and the only quantitative, observational data that exist on what this species does while feeding young (Tanner 1942) suggest some specialization was in fact occurring at least at the Singer Tract from 1937 to 1939. The problem is that many of the prey items (specifically identified in Tanner and emphasized by others since Tanner’s study), even during breeding, do not seem to match up well with the foraging substrates documented by Tanner as most used by ivory-bills feeding young.

In my view, there are some discrepancies between what Tanner observed and reported and the physical evidence he collected during his study related to ivorybill feeding. I also think there may be discrepancies between Tanner’s observations and those of others from the Singer Tract. At least one thing is clear, Tanner’s observations and the photographic record differ markedly from some of his later recollections. In addition, the monograph itself is sometimes ambiguous, as is evidenced by the disagreements mentioned above. It should become clear that the ambiguity and occasional lack of clarity in Tanner’s monograph have led many, myself and my collaborator included, into misinterpretations. We hope that this series of posts will shed more light and clear up some of the ambiguities.

As most readers already know, Tanner’s observations were restricted to one (and the same) family group each of the three breeding seasons during his study. While a sample size of essentially one family group would normally be a serious constraint for comparing with other information, it is important to point out this information represents the only detailed information we have on prey, foraging behavior, and breeding success for ivory-bills, keeping in mind this family successfully fledged young each of these three years. So the data and information Tanner reported on is directly relevant for understanding what was important for successfully fledging young under the conditions found at the Singer Tract during the late 1930s, but as Tanner himself pointed out in his monograph “…the conclusions drawn from them will not necessarily apply to the species as it once was nor to individuals living in other areas.”

Regarding the observations of others on the Singer Tract, I’ll begin with what may have been the last sighting of the John’s Bayou male. In August 1941, George Bick saw three ivorybills feeding in an ash flat near Sharkey Road, quite likely between the bridges over John’s and Methiglum Bayous, south and west of the John’s Bayou home range as delineated by Tanner. This is the only area along Sharkey Road that Tanner listed as “Ash Flat” on his 1941 map.

According to Bick, “I immediately stopped the car and noticed two Ivory-billed Woodpeckers perched in two small ash trees about eight inches in diameter, having recently killed tops. Only one of the birds was carefully observed. A bright, white bill, flaming red crest, and large white wing patch were all clearly noted as the bird remained at the tree. The second bird in a similar ash tree was observed less carefully . . . [A third bird] flew from a dying water-oak tree ten inches in diameter which had only a few curled brown leaves. A stripped spot about six by eight inches and about seventy feet from the ground was present on the trunk of this tree. This is thought to be a spot where the birds had been feeding and to represent the characteristic Ivory-bill ‘sign.’ In the immediate area were many ash trees with dead tops. Much of the bark was stripped in patches of varying size. This may possibly be old Ivory-bill feeding grounds.”

Logging had taken a significant toll in the Singer Tract by the time of Bick’s sighting. It’s thus possible that the birds were foraging in a suboptimal area due to logging pressure. Nonetheless, it’s still worth pointing out that Bick’s observations were in habitat and on tree species where Tanner observed virtually no foraging activity during his study (which ended two years prior, in 1939; he had no feeding observations on water oaks and only one on an ash). It’s also worth pointing out that Bick made specific reference to sweet gums (what he called “red gums”) as being abundant elsewhere but absent from this location.

My collaborator suggested that Bick’s inference that this ash flat was an “old Ivory-bill feeding ground[s]” is questionable. He suggested that changes in hydrology due to logging may have led to an ash die-off. He also noted that this was Bick’s only observation during his six month stay in the Tract, indicating that he was either not looking hard for ivorybills and/or that ivorybills were not using the ash flat on a regular basis. He added another caveat: it is important to remember that Bick’s observation was in August, well after the breeding season when even Tanner assumed foraging behavior for Ivory-billed Woodpecker likely expanded to different habitats and tree species than used during the time they were feeding young at John’s Bayou.

It’s interesting to note that the last known roost, where Don Eckelberry and young Billy and Bobby Fought famously said goodnight to a lone female ivorybill in April 1944, was apparently located in the ash flat where Bick saw his birds (W. Barrow pers. comm.). Just a few months earlier, in December-January 1943-’44, Richard Pough found a lone female roosting in the heart of the John’s Bayou range, about a mile north and east. According to Pough, who was convinced she was the last ivorybill in the Tract, this bird only crossed the Bayou once “for a brief visit to some trees a few hundred feet west of it . . . confining its activities to an area of hardly more than one quarter of a square mile, within which there were an unusually large number of dying trees.”

In our most recent conversation, my contributor and I touched on the question of whether Bick’s birds (and presumably the one seen by Eckelberry and the Foughts) were from the John’s Bayou family group. Either way, it’s a potentially interesting wrinkle. If the birds did come from John’s Bayou, this points to a heavier use of the ash flat for a period of years than is suggested by the limited information about the family group after 1939. All other observations – Pough, Peterson, Tanner, and Baker – were in the heart of the John’s Bayou home range, and at least one of those birds was reliably present there until shortly before Eckelberry and the Foughts said goodnight. On the other hand, if Bick’s birds were a different family group, it suggests that more ivorybills were in the Singer Tract in 1941 than is commonly assumed. (It’s worth repeating that Peterson wrote that one ivorybill was seen in December 1946, and the last letter to Tanner directly related to the Singer Tract birds says that game warden Gus Willett saw a pair in November 1948 and mentions other reports from around that time.)

To return to the Bick report: all of the trees seem to be in the smallest of Tanner’s size classes, 3-12″ in diameter. This class comprised 75.1% of the forest but was the source of only 12.7% of Tanner’s feeding observations. Tanner believed that ivorybills prefer larger trees because they “have more dead and dying wood” but his own data on this are ambiguous, and what he characterized as large seems problematic. The assumption about older trees having more dead and dying wood may have been true around John’s Bayou during Tanner’s study, but this is by no means always the case – the pine forests of Florida, for example, where Allen and Kellogg found abundant feeding sign on young dead pines, which are more vulnerable to fire than mature trees. And as pointed out in the previous post, even in the Singer Tract, the Mack’s Bayou home range was mostly second growth, so forest composition there must have been quite different.

There are a couple of ways to interpret this data. It’s true that 87% of the feeding was “on trees that are over a foot in diameter”, but this is somewhat misleading. 13-24″ diameter trees are the second smallest size class. They hardly qualify as large and approaching senescence, yet they account for 49% of Tanner’s feeding observations. It’s also true that, relative to abundance, the Singer Tract ivorybills showed a strong preference for trees in the 25-36″ class, but the abundance/observation ratios for 13-24″ trees and over 36″ trees are nearly equal, with a slight preference for the smaller size class not the largest. Thus, I think it’s equally accurate to characterize the data as showing that over 60% of observed ivorybill foraging was on smaller trees, under 24″ diameter at breast height and to reiterate that the most often used feeding trees were in the second largest size category, not the largest. (Tanner pp. 43-45).

On the other hand, there’s a good argument that the data show Ivory-billed Woodpeckers foraged on trees in the 13-24” class at 2.6 times the availability, in the 25-36” class at 6.7 times the availability, and in the 36” plus class 2.57 times the availability; there were very few trees in this size class, most of them sweet gums and a few Nuttall’s oaks (Tanner pp. 43-45). Contrast this with the 3-12” class, when the trees were 5.9 times more available than used.

A few additional points should be added to the mix. The numbers discussed above are aggregates, and size preferences were not at all evenly distributed among tree species. Fully 20% of Tanner’s total observations involved sweet gums in the 13-24” class, the most fed upon type. On sweet gums, frequency and abundance ratios are similar for the 13-24” and 25”-36” classes (the latter is the second most fed upon type, comprising around 18% of Tanner’s total observations). For Nuttall’s oak, 13-24” and 25-36” trees were approximately equal in abundance, but Tanner observed considerably more frequent feeding on the larger class.

My collaborator argues that it is more important is to recognize that when combining the data on sweet gums and Nuttall’s oaks, they collectively comprised 31.4% of the total forest and 79.3% of the foraging observations. Trees within the 25-36” class made up 31% and trees within the 13-24” class made up 29% of all foraging observations. Almost all of the trees in the 25”-36” class (5.2%) were in fact sweet gum or Nuttall’s oak, but for trees in the 13-24” class (18.3%) only about 5% (or about a third) were of these two species. This further highlights what Tanner described as heaviest use on sweet gum and Nuttall’s oak for the John’s Bayou family group over all other available trees, and a disproportionately high use of the second largest size class relative to abundance. However, this documented use pattern was not to the total exclusion of other tree species or even the smallest size class available.

This last was a point of contention. I took issue with aggregating sweet gums and Nuttall’s oaks, since they grow and mature at different rates. In addition, I think it’s important to highlight the fact that 13-24″ sweet gums were the single most fed upon type both in terms of frequency of observations and ratio of observations to abundance (albeit it by a small margin). As I see it, this undercuts the misinterpretation of Tanner that ivorybills are ‘large tree specialists’, a misinterpretation I think Tanner invited when he wrote, “The reason for Ivory-bills feeding on the bigger trees is that large, old trees have more dead and dying wood. Young trees grow rapidly and are resistant to the attacks of insects and disease.” As trees ‘mature’ their growth slows and becomes less vigorous, decay begins, insects attack them, and woodpeckers come after the insects.” (p. 43).

In light of this misconception, I also think it’s important to reiterate that in the aggregate, the over 36″ size did not show anything near the disproportionately high use of the 25-36″class. In fact, the rate was very slightly higher on the 13-24″ trees.

Regardless of how one interprets this very limited data set, the idea that Ivory-billed Woodpeckers required ‘large trees’ for foraging has become a truism. The reality is considerably more complex.

The next installment will focus primarily on decay class, and the final one will look at prey species. Stay tuned.


Habitat Conditions in the Singer Tract

Late last year, I wrote a post entitled “More Minutiae – Habitat Quality and Population Density in the Singer Tract”. I had to follow up with a couple of corrections and elaborations based on insights others shared with me. In the interest of providing more clarity and coherence, I thought I’d do a new piece combining the three posts and expanding on them a bit. I won’t delete the originals, but this one reflects what I think is a more accurate understanding of the material involved.

Mack's Bayou Ivorybill nest tree. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

Mack’s Bayou nest tree. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

The initial post was inspired by the image above and the caption describing it as the “Third ivorybills’ nest”, one I had looked at but not closely until last year. When I did examine it carefully, I was struck by how open the surrounding area seemed to be. Then I started going through archival photographs and scrutinizing them a little more closely.

In browsing through the Louisiana Digital Library’s collection of Singer Tract photographs, I came across an image that I had missed, one of the bridge over John’s Bayou taken in 1940. Tanner (p.32) includes an ivorybill sighting from this immediate vicinity, just northwest of the bridge. What I find interesting about the photograph is that the forest along the road appears to be fairly even-aged and does not have the characteristics typically associated with old growth. It is similar to what can be found in many parts of Louisiana today. An image from along Sharkey Road taken in 1937 shows similar characteristics, although another shot from 1939 (probably taken east of the bridge) shows more impressive looking habitat.

Richard Pough wrote a follow-up report to the Audubon Society on the Singer Tract in 1944. It’s a very interesting document that raises some questions about Tanner’s work. Pough explicitly accepted “Tanner’s premises as to the feeding habits and habitat preferences of the ivory-bill”, but he also noted “[n]othing in Mr. Tanner’s study indicates that Ivory-billed Woodpeckers show any preference or marked dependence on trees of great size such as one would find only in a virgin forest. He found them doing 14% of their feeding on trees 3”-12” in diameter and 64% on trees under 24” in diameter.”

Pough pointed out that “Maps of the area as of 1846 showed much of the Tensas River in plantations and many cleared fields back from the river on some of the interior ridges. This development continued for another 20 years until the Civil War, by which time Madison Parish was producing 110,000 bales of cotton a year. As the Parish has never produced over 30,000 bales since the Civil War, one gets some idea of how much land is now occupied by second growth forest of approximately 80 years age.”

Pough found only one ivorybill, a female. He assumed, relying on Tanner, that this was the only one left in the Tract. He may well have been mistaken, since Gus Willett, game warden in the Tract, wrote Tanner about seeing a pair in November 1948 (although the exact location is unclear). Correction, Willett did not write the letter, although the report reached Tanner, as discussed here.

The lone bird Pough saw was either the John’s Bayou female or one of its offspring. According to Pough, this bird was probably not feeding in virgin forest, and his report specifically suggests that Tanner might have been mistaken about the maturity of some of the habitat in the John’s Bayou area. In 1941, Tanner had written that the remaining John’s Bayou birds were roosting and feeding in “virgin” timber. Pough’s description of this area (and it seems to be the same patch) suggests it was likely cultivated pre-Civil War. It was devoid of big sweet gums, which Pough deemed to be the best indicator of old growth conditions, but had many dying Nuttall oaks 12-20 inches in diameter. Nonetheless, Pough relied on  Tanner’s premises to conclude that “only a relatively small portion of the total area of the Singer Tract supported a forest suitable as habitat for these birds.”

To return to the material in the earlier blog posts, much of the discussion focused on home ranges and the distribution of nest sites.

This map, drawn by Tanner after the 1935 expedition, lists three nests – designated as nests II, III, and IV –within a mile or two of each other and in the vicinity of John’s Bayou. Nest II is the famous “Elm Rock” nest. The map also shows a tree which is designated “Nest (?) III Squirrel” (also mentioned in Bales, “two miles to the south of the first nest” and fifty feet up p. 45). This was outside the area Tanner designated as prime in 1941 (p. 91); it is approximately a half-mile from the John’s Bayou bridge.

I’ve discussed this issue in depth with someone who’s very familiar with Tanner’s notes. I’m now persuaded Tanner concluded that nests III and IV from 1935 were not nests after all and that he assigned the birds involved to Titepaper (Nest III) and Bayou Despair (Nest IV). Nest IV is apparently one that Kuhn found but was unable to re-locate. Why Tanner changed his mind about it remains a mystery.

It’s very difficult to piece together this fragmentary information, and the monograph muddies the waters a bit by presenting the home ranges of the birds as being quite discreet, perhaps a good deal more than they were in fact. I suspect that Tanner decided the cavities were actually roosts, (although neither one is mentioned in the monograph). If so, they would have been well outside the home ranges Tanner identified and closer to the core of the John’s Bayou range than to the core of Titepaper or Bayou Despair.

Nests I and V were located near Mack’s Bayou. Nest I is dated May 14, ’34 on the map, and Nest V is dated May 10, ’35. The ’35 nest failed. It is the one referenced above. Allen and Kellogg described it as being 45’ feet up, in a pin oak snag, in a natural clearing, although it has been suggested that the snag may have been a remnant large tree in area that had been cleared prior to the Civil War. The nest designated Nest I and dated May 14, 1934 appears to be the one Tanner described on p. 81 of the monograph, “located within 100 yards of the second nest found in 1935”; however, in the monograph, he gave the date as May 13, 1933.

It’s worth pointing out that the Mack’s Bayou nests were in an area that Tanner designated as “best” for ivory bills (even if it’s not clear whether it was truly old growth). Nonetheless, nests failed in 1933 and 1935, and the adult birds had disappeared by 1938, apparently after producing one fledgling in 1936 or 1937. This was before the logging began.

My intention in writing those initial posts was to get a clearer handle on population densities and habitat requirements in the Singer Tract. In retrospect, I’m not sure that’s possible, since Tanner’s observations were almost entirely limited to one family of birds in a population that was dwindling for unknown reasons. At the very least, Tanner’s statement that 7 pairs of birds required 120 square miles of virgin forest in 1934 is based on an inflated estimate of the amount of old growth in the Tract and his minimum estimate of 6.25 square miles per pair also rests on that flawed premise.

Pough observed, “ . . . the ivorybill problem puzzles me exceedingly, and I do not feel that Tanner’s report begins to explain the reasons for the drastic decline in this species.” As the 2014-2015 search season approaches, I can only hope that the question of how the species persisted will puzzle people exceedingly in future years.