Advertisements

More Squirrels and No Scaling on a Mature Sweetgum

I have reviewed the entire late August-late October card and some of the June-August card for what we’ve designated as deployment 5 – a three-years dead Sweetgum stub discussed last summer. Based on approximately six months of data from this deployment, I think squirrels can be excluded as the source of extensive bark removal from mature, thick-barked hardwood boles, just as the data suggest that Pileated Woodpecker can be excluded as the source of scaling on hickories.

The only potential sources of the extensive bark removal under discussion are gray or fox squirrel, Pileated Woodpecker, and Ivory-billed Woodpecker. Pileated Woodpeckers appear to be unable to remove large quantities of bark from hickories in large pieces, and squirrels appear to be unable to do so on the weaker, thinner-barked sweetgums. Based on trail cam captures obtained thus far, Ivory-billed Woodpecker is the likeliest source for the extensive bark-scaling on hickories that we’ve found infrequently in our search area and that I’ve hypothesized is diagnostic for that species.

There were no woodpecker hits on this target tree, but there are multiple sequences involving squirrels. There was minimal little bark removal, and only from previously scaled areas. In fact, I have only detected one visible change to the bark. A small quantity was removed on June 9, between 11:44:13 and 11:44:33. This is shown in the details below.

Squirrels were active on this scaled patch over the course of the deployment, but whatever removed the small strip of bark on the lower right did so during that 20-second interval and was not captured on the trail camera. I think a woodpecker of some sort is probable, since a squirrel would likely have been visible on the trunk in preceding or subsequent frames.

More importantly, squirrels were captured on or around the scaled areas on multiple occasions, and the captures shed light the way they interact with bark on standing boles and what may limit their capacity to remove it.

This deployment ran from August 19-October 21. Squirrels were detected on 17 days and on or near the scaled surfaces on at least 6 of those days. As previously documented, squirrels displayed interest in the edges of the scaling and frequently appeared to be gnawing; however, they removed little or no bark. We now have numerous captures of squirrels on target boles, both scaled and unscaled, and no captures showing them removing bark in quantity or in anything other than small strips.

Squirrels are clearly capable of rapidly and efficiently removing bark from limbs, downed trees, and thinner barked boles. However, I think there are physical limits – body structure and incisor length – on their capacity to remove thick bark from standing boles.

The following images and time lapse clips show what squirrels do when confronted with thicker bark and suggest that when hanging onto a standing trunk, they lack the leverage to remove bark quickly and leave large pieces behind. This should apparent in the selection of stills and video clips shown below as well as in the sequences posted previously. (A brief discussion of squirrels on hickories follows the images.)

180903AA_Frame1588

180903AA_Frame1560

180903AA_Frame1559180903AA_Frame1558

180917AA_Frame580

180917AA_Frame579

180928AA_Frame1201

180928AA_Frame1200181011AA_Frame1238

181011AA_Frame1237

 

Up to now, I have not been differentiating among squirrel hits on targeted trees, squirrel hits on or near scaled surfaces, and squirrel hits in other parts of the frame. Suffice it to say there many, far more than woodpecker hits on both sweet gums and hickories. Squirrels frequently show an interest in the scaled surfaces and also in other damaged areas (like the fracture in the hickory bark shown below). To date we have no examples of squirrels removing any bark from hickories, regardless of condition. It stands to reason that the limits of their capacity on hickories would far exceed what limits their capacity on sweet gums.

180831AA_Frame444

 

 

 

 

Advertisements

Final Installment: Trail Cam Deployment and Pileated Woodpecker Hits April-October 2018.

I’ve completed reviewing the cards from the deployment discussed in three previous posts. As it turned out, the most dramatic and informative sequence was captured on July 29; it was the last sequence found in the course of the review.

To recapitulate: the tree is a hickory, and hickory bark is uniquely tough, tight, and hard to remove; when first found in early 2017, the tree had already been extensively scaled, probably during the spring and summer of 2016; additional and extensive scaling took place between early 2017 and early 2018; at the time the trail cam was first deployed in April 2018, I’d estimate that over 30% of the entire surface area of the tree had been stripped of bark.

This type of very extensive scaling on hickories has a distinctive appearance, and I hypothesize that it is diagnostic for Ivory-billed Woodpecker. I further hypothesize that it is beyond the physical capacity of Pileated Woodpeckers to do this type of work. We have not yet documented whatever is doing the initial scaling (which is the main objective of these deployments), but data collected thus far on Pileated Woodpecker foraging on hickories tend to exclude this species as the source of the initial work.

Minimal additional bark removal took place between April and October 2018, and all Pileated Woodpecker visits to the targeted part of the tree were captured by the trail cam, except for any that may have occurred between August 12 and August 21, when the camera malfunctioned. The images below are from the beginning and end of the deployment, and they reveal just how little bark was removed over a nearly six month period, when Pileated Woodpeckers visited the tree at least 23 times.

 

 

 

 

The breakdown of those visits may be related to beetle abundance near the interface of bark and sapwood; this could be relevant to peak ivorybill foraging times as well, although there were no possible ivorybill captures during this deployment.

Pileated Woodpeckers (alone and in pairs) visited the tree 10 times between late April and June – on May 1, May 3, May 8, May 12, May 21, May 25, May 28, May 30, June 1, and June 4.  There were nine visits between June 17 and July 3, (with two sets of of captures on June 17 and July 3rd). Hits dropped off dramatically after July 3rd. There were none between July 4 and July 25 and one each on July 26 and 28. The final hits were on September 24 and a very brief one on October 5.

The duration of these visits ranged from approximately one minute to over 20 minutes. At just under 15 minutes, with two birds present, the July 29th clip is one of the longer ones. Immediately below are the captures from July 26 and July 29 and a version of the July 29 capture at 1/10 speed, which makes it easier to see what the birds are doing while on the trunk. The relevant part of the clip ends at just after the one minute mark. If you have the capacity to download the captures and step through them frame by frame, that will also be helpful. Some additional discussion after the videos.

 

 

 

 

 

 

 

 

 

 

 

 

This capture shows the most extensive single incident of bark removal by a Pileated Woodpecker over the course of the deployment. It’s also the only incident in which bark is removed from an area that is not an edge. The area in question is on the upper right.

I think this illustrates the Pileated Woodpecker’s very limited capacity for bark removal on hickories. It takes the bird several minutes to remove approximately 8″x2″ of bark (crudely estimated, based on the size of the woodpecker). This is roughly equal to, and possibly less than, the area of many of the individual chips found under the homepage tree. In addition, it appears that the PIWO removed the bark by excavating through it, not by stripping it.

It’s also worth pointing out that the snag and remaining bark are farther along in the decay process, and hence the bark is likely easier to remove, than when the first two rounds of scaling took place.

This is congruent with what I’ve hypothesized; Pileated Woodpeckers are very well adapted for excavating, and they are capable of digging through even tough, dense hickory bark; however, they appear to be excavating but not to be capable of removing it by scaling in large chunks.

We will continue to collect data, which may end up contradicting the findings thus far, all of which suggest that some other animal is responsible for the initial, very extensive scaling. The main purpose of this deployment was to document what woodpecker activity on a tree that had already been scaled; I expected that this would involve Pileated Woodpeckers, not ivorybills. It will take considerable luck to predict which trees are likely to be scaled and capture whatever is doing the initial bark removal; that’s the primary focus of this effort. There are a lot of hickories in the woods, and we’ve only found a handful of impressively scaled ones over the years.


Updated with More Pileated Woodpecker Clips: Trail Cam Results and More on a Camera Trap Tree

The original post from last week is below the updated material. It provides some important background, and I encourage you to read all the way and watch the clips.

A couple of prefatory notes for new readers: first, this discussion pertains to hickories only because the bark of trees in the genus Carya has characteristics that make it much harder to remove than any other type of tree in the southeastern U.S. Second, the video clips are time-lapse composites of images shot at 20 second intervals.

I’ve gone through most of the June-August captures from the deployment discussed in the original post and have found a number of additional examples showing one or two Pileated Woodpeckers foraging on the scaled areas. I’m including those captures and a couple of individual frames that should help illustrate what’s being described.

Pileated visits to the target tree spiked starting on June 17, with two visits on that day, one on June 18, and one on the 20th, 23rd, 24th, 25th, one on July 2, and two on July 3. There were no hits between July 4 and July 10 and no hits between August 2 and August 12. Imagery for July 11-August 1 has yet to be reviewed.

Of the sequences below, the ones from June 17, 18, and 25 are probably the most informative. They suggest that when Pileateds remove hickory bark, even on a tree that is considerably more decayed than some on which we’ve found scaling, they do so by focusing on the scaled edges, and when they do remove bark, they’re more likely to dig through it (as I’ve hypothesized) than to pry it off in flakes.

We have now obtained 22 sequences of Pileated Woodpeckers investigating or foraging on and around extensively scaled hickory boles, the first one dating back to 2013. Some captures involve lone birds and others involve pairs. Duration of the visits ranges from under 1 minute to upwards of 20 minutes. In these captures, Pileated Woodpeckers remove bark in modest quantities and with difficulty, when they remove it at all. They never scale extensively or remove bark in pieces approaching the size of those found under the homepage tree, and there is nothing in the footage obtained that suggests they are capable of doing so. I think this tends to exclude Pileated Woodpecker as the source of the initial work on hickories.

Hickory2Chips

Suspected IBWO hickory chips

 

 

 

 

These stills should shed additional light on Pileated Woodpeckers and bark removal.

 

The additional sequences are below, followed by the text of the original post.

 

 

 

 

 

 

*************************************************************************************

I just returned from Louisiana where I visited both the search area and the location of Joseph Saucier’s sighting last year. There were no possible encounters on this trip and just a little of potential significance ivorybill-wise. I plan to post a trip report within in the next week or so and hope to get to the long-promised evidence post in November. There may be additional posts about trail cam results if anything significant shows up. There are numerous cards to review, and I have a lot going on in a variety of arenas, but I’ll do my best to keep you all updated on a regular basis.

I’ve gone through the card for one of our deployments between August 21-October 20. The June to August card has yet to be reviewed, but these results are informative in their own right, especially in conjunction with the results from April and May, discussed here. I think they tend to support the hypothesis that Pileated Woodpeckers are not responsible for the bulk of the bark removal on live or recently dead hickories and at least indirectly to support the hypothesis that Ivory-billed Woodpeckers are the only creature capable of doing this type of work. (Go here for a discussion of squirrels as a potential source.)

At Tommy Michot’s suggestion, we’re also going to start quantifying our results, including all hits that we note, regardless of what kind of animal is involved. Those results appear at the end of the post.

Like two other current target trees, which are sweet gums not hickories, I selected this one because it had already been scaled (extensively in this case); the remaining (majority of) targets have been chosen in hopes that they will be scaled in the future. For most of the hickories we’ve found, including ones that I’ve watched for extended periods of time, the bulk of the scaling appears to have been done in a single visit.

We’ve found only one example of a tree with truly fresh scaling, the home page tree. That work, found in May 2013, was probably no more than a week old, since the trunk was wet with sap and the tree died soon after. Numerous large chips were found at the base. All other examples appear to have been less recent, and in most instances, flooding appeared to have washed bark chips away.

After reviewing the captures, I was inspired to revisit the history of this particular snag, which Phil Vanbergen found in early March, 2017. It had been extensively scaled at that time, I suspect during the spring or summer of 2016 but possibly the year before. Phil found a few small chips at the base, but given the extent of the scaling, it is safe to assume that the overwhelming majority of the chips associated with the initial work had been washed away in one of the flooding events that had taken place during the intervening months. Phil shot this video of the tree, which shows the work extending from mid-bole up to the point where the crown had broken off; I later found what I believe to have been the crown, and it too had been scaled.

 

 

 

 

 

 

 

Bark Strips

Small Strips Found by Phil Vanbergen at Base of Scaled Hickory, Presumed Source is Pileated Woodpecker

IMGP4590

Downed Hickory Top showing suspected ivorybill scaling.

What sets this tree apart, is that there appears to have been a second extensive scaling event between March 2017 and March 2018 when I re-found it. While there had been a couple of floods in the course of the year, one large and a couple of medium-sized chips remained near the base of the snag, but it was apparent that most had been washed away.

 

 

 

 

 

 

We deployed a trail cam on the tree in April, and one of the early frames from that deployment more clearly shows the extent of the second round of scaling, which reaches to near the base of the snag.

A comparison of that frame, one from the beginning of the mostly unreviewed June-August card, and a capture from October 21 of this year shows how little bark has been removed by Pileated and other woodpeckers over the course of just under six months, with modest quantities removed from the bole, as indicated by the arrows.

 

 

 

 

 

 

 

Pileated Woodpeckers appeared in two captures between late August and late October, a far lower rate than in April and May. The first capture, from September 24, involved one bird, which spent several minutes on the target tree and did little additional damage. The other, from October 5 involved two birds and was fleeting but cool to see. The time lapse clip and the three captures are below

 

 

 

 

 

 

 

 

 

 

 

 

Pileated Woodpeckers are abundant in the area, but we have yet to obtain any evidence that they can remove large chunks of bark from the boles of live or recently dead hickories and scale them rapidly and extensively; indeed, all the evidence obtained thus far is that they remove bark in small pieces, slowly and inefficiently.

Past observations suggest that the peak period for scaling of these hickories is between May and October. This appears to be the time frame when Hesperandra polita, the heartwood dwelling Cermabycid identified as infesting one of our scaled hickories, are likeliest to be  found under the bark, as larvae and adults, or close to the bark layer in pupation chambers. The adults shown below were collected from under bark on June 28, 2013.

 

 

 

 

 

In the case of this snag, at least, Pileated Woodpeckers removed little bark during the probable peak scaling period. The other side of the tree remains unscaled. In addition, we’ve found this work infrequently over the years, and the scaling on the lower part of this tree is the only new example of this kind of foraging sign found in the past year. All of this points to something other than Pileated Woodpecker, and I would suggest something rare, as the source of the scaling.

Regarding the hits over the course of the deployment, I’m counting a “hit” as the appearance of an animal in a frame or series of frames, including interrupted series in which the animal reappears after a break of a minute or two. Impressionistically, this deployment is considerably more active than some. Even so, there were no hits on 17 of 62 days.

The most frequent hits were lizards (mostly on the target tree): 46 hits.

Passerines, including Hooded Warblers, Carolina Wrens, and Cardinals, were next with 24 hits, followed closely by squirrels with 22.

Woodpeckers followed – 2 Pileated hits, one involving two birds, one Downy and one probable Yellow-bellied Sapsucker toward the end of the deployment.

There were two hits each for beaver, deer, and moth or butterfly (one likely a luna moth).

Finally, there was one apparent Barred Owl and only one hog, which was surprising given their abundance in the area.

Stay tuned for the trip report . . .

 


Trail Cam Results and More on a Camera Trap Tree

I just returned from Louisiana where I visited both the search area and the location of Joseph Saucier’s sighting last year. There were no possible encounters on this trip and just a little of potential significance ivorybill-wise. I plan to post a trip report within in the next week or so and hope to get to the long-promised evidence post in November. There may be additional posts about trail cam results if anything significant shows up. There are numerous cards to review, and I have a lot going on in a variety of arenas, but I’ll do my best to keep you all updated on a regular basis.

I’ve gone through the card for one of our deployments between August 21-October 20. The June to August card has yet to be reviewed, but these results are informative in their own right, especially in conjunction with the results from April and May, discussed here. I think they tend to support the hypothesis that Pileated Woodpeckers are not responsible for the bulk of the bark removal on live or recently dead hickories and at least indirectly to support the hypothesis that Ivory-billed Woodpeckers are the only creature capable of doing this type of work. (Go here for a discussion of squirrels as a potential source.)

At Tommy Michot’s suggestion, we’re also going to start quantifying our results, including all hits that we note, regardless of what kind of animal is involved. Those results appear at the end of the post.

Like two other current target trees, which are sweet gums not hickories, I selected this one because it had already been scaled (extensively in this case); the remaining (majority of) targets have been chosen in hopes that they will be scaled in the future. For most of the hickories we’ve found, including ones that I’ve watched for extended periods of time, the bulk of the scaling appears to have been done in a single visit.

We’ve found only one example of a tree with truly fresh scaling, the home page tree. That work, found in May 2013, was probably no more than a week old, since the trunk was wet with sap and the tree died soon after. Numerous large chips were found at the base. All other examples appear to have been less recent, and in most instances, flooding appeared to have washed bark chips away.

After reviewing the captures, I was inspired to revisit the history of this particular snag, which Phil Vanbergen found in early March, 2017. It had been extensively scaled at that time, I suspect during the spring or summer of 2016 but possibly the year before. Phil found a few small chips at the base, but given the extent of the scaling, it is safe to assume that the overwhelming majority of the chips associated with the initial work had been washed away in one of the flooding events that had taken place during the intervening months. Phil shot this video of the tree, which shows the work extending from mid-bole up to the point where the crown had broken off; I later found what I believe to have been the crown, and it too had been scaled.

 

 

 

 

 

 

Bark Strips

Small Strips Found by Phil Vanbergen at Base of Scaled Hickory, Presumed Source is Pileated Woodpecker

IMGP4590

Downed Hickory Top showing suspected ivorybill scaling.

What sets this tree apart, is that there appears to have been a second extensive scaling event between March 2017 and March 2018 when I re-found it. While there had been a couple of floods in the course of the year, one large and a couple of medium-sized chips remained near the base of the snag, but it was apparent that most had been washed away.

 

 

 

 

 

We deployed a trail cam on the tree in April, and one of the early frames from that deployment more clearly shows the extent of the second round of scaling, which reaches to near the base of the snag.

A comparison of that frame, one from the beginning of the mostly unreviewed June-August card, and a capture from October 21 of this year shows how little bark has been removed by Pileated and other woodpeckers over the course of just under six months, with modest quantities removed from the bole, as indicated by the arrows.

 

 

 

 

 

 

Pileated Woodpeckers appeared in two captures between late August and late October, a far lower rate than in April and May. The first capture, from September 24, involved one bird, which spent several minutes on the target tree and did little additional damage. The other, from October 5 involved two birds and was fleeting but cool to see. The time lapse clip and the three captures are below

 

 

 

 

 

 

 

 

 

 

Pileated Woodpeckers are abundant in the area, but we have yet to obtain any evidence that they can remove large chunks of bark from the boles of live or recently dead hickories and scale them rapidly and extensively; indeed, all the evidence obtained thus far is that they remove bark in small pieces, slowly and inefficiently.

Past observations suggest that the peak period for scaling of these hickories is between May and October. This appears to be the time frame when Hesperandra polita, the heartwood dwelling Cermabycid identified as infesting one of our scaled hickories, are likeliest to be  found under the bark, as larvae and adults, or close to the bark layer in pupation chambers. The adults shown below were collected from under bark on June 28, 2013.

 

 

 

 

In the case of this snag, at least, Pileated Woodpeckers removed little bark during the probable peak scaling period. The other side of the tree remains unscaled. In addition, we’ve found this work infrequently over the years, and the scaling on the lower part of this tree is the only new example of this kind of foraging sign found in the past year. All of this points to something other than Pileated Woodpecker, and I would suggest something rare, as the source of the scaling.

Regarding the hits over the course of the deployment, I’m counting a “hit” as the appearance of an animal in a frame or series of frames, including interrupted series in which the animal reappears after a break of a minute or two. Impressionistically, this deployment is considerably more active than some. Even so, there were no hits on 17 of 62 days.

The most frequent hits were lizards (mostly on the target tree): 46 hits.

Passerines, including Hooded Warblers, Carolina Wrens, and Cardinals, were next with 24 hits, followed closely by squirrels with 22.

Woodpeckers followed – 2 Pileated hits, one involving two birds, one Downy and one probable Yellow-bellied Sapsucker toward the end of the deployment.

There were two hits each for beaver, deer, and moth or butterfly (one likely a luna moth).

Finally, there was one apparent Barred Owl and only one hog, which was surprising given their abundance in the area.

Stay tuned for the trip report . . .

 


Recent Trail Camera Results Part 2: Squirrel(s) on a Sweet Gum Stub

Summary

I suggest reading Part 1 for background and context, if you haven’t already.

The target of this deployment (5/3-6/3/2018) was the sweet gum stub discussed here. The tree was killed when its top was blown off in spring 2015. A patch of recent scaling was found this season. I suspect the initial scaling is woodpecker work, but squirrel is also possible. The extent is modest in terms of what I hypothesize is diagnostic for Ivory-billed Woodpecker:

A particular and distinctive looking type of extensive scaling (large contiguous areas with bark removed) with associated insect tunnels on bitternut and pignut hickory boles – live trees, snags, and stubs – may be diagnostic for ivorybill. For recent work, the presence of large bark chips at the base of such trees is a related potential diagnostic.

Insect tunnels are present on this stub. Species is/are unknown, and tunnels are small compared to those found in the hickories.

In contrast to the hickory discussed in the previous post, there were no woodpecker captures over the course of this deployment and squirrels were very active on the scaled area, appearing on May 4, 5, 8, 10, 12, 13, 15, 17, and 22. There were multiple visits on some days, and the total time spent on the scaled area was significant, upwards of an hour, with at least one visit lasting nearly 25 minutes. It was surprising that squirrel activity ended on the scaled area ended on May 22nd, and there was none over the next 11 days.

Over the course of this deployment, squirrels removed a modest quantity of bark, apparently in strips, from part of the scaled area. They did this inefficiently – with some difficulty and with the grain. The bark, already softer and weaker than hickory, has weakened in death and is at best moderately tight (relatively easy to peel off by hand). Captures from the first and last full days (note the Hooded Warbler on the branch to the left) of the deployment reveal how little bark was removed, all or almost all from the right side of the scaled area. (Click on the images to enlarge them.)

 

 

This suggests that squirrels are unlikely candidates for removing bark from hickory boles in quantity, leaving large chips behind, or initiating extensive scaling on hickories. In my view, it’s probably impossible for them to do so. The results for Pileated Woodpecker from the hickory deployment and squirrel from this one support my hypothesis that Ivory-billed Woodpeckers are the source of the initial hickory scaling. But more data are needed.

Background

Before turning to the trail cam captures and accompanying images of the scaled surfaces, I’ll provide some background information on the impetus for this post and on squirrel behavior.

An email discussion of squirrels and bark scaling was ongoing prior to my starting to review the images from this deployment. Wylie Barrow suggested an alternative explanation: that squirrels might be the source of much of the scaling (including the work on hickories) that’s taking place in the search area. He pointed out that  . . . “Squirrels have removed bark from 1/4 to 1/2 of the trunk and several large branches from large oaks in my yard… and they work with great speed. They often leave large bark chips on the ground beneath the trees. Trees are living and bark is tight and fairly thick.” (W. Barrow, pers. comm.)

At first, I took some umbrage at this suggestion, thinking that I had thoroughly examined and considered what squirrels might be doing on the hardwoods in our search area and what the upper limits of their capacities might be. While my basic views on this are unchanged, and the trail cam images tend to support those views, I’m grateful to Wylie for keeping me on my toes.

It’s certainly true that in the past I have failed to consider squirrels and the role they might play in bark scaling, and this has led me down some blind alleys, as was discussed in a series of posts in early 2016. I have also been too confident in those conclusions, even though I think this material supports them. Wylie’s suggestion led me to conduct additional online research on squirrels (and he provided additional references).

I had a number of off-the-cuff theoretical and observation-based objections to Wylie’s suggestion.

One evolutionary objection is reflected in a comment I made early in our exchange: “the predator in question would have to have evolved to take advantage of this very narrow window of opportunity when the insects are near the surface . . .” I thought and still think this points toward a woodpecker as the source, and toward a Campephilus woodpecker in particular, since this foraging strategy is characteristic of the genus.

The hickory scaling is associated with sapwood dwelling Cerambycid infestation, and signs of woodpecker activity (targeted digging around exit tunnels) are present in all cases. The homepage tree was very recently scaled when found, and woodpecker evidence was present. Wylie replied that squirrels are opportunistic and might be feeding on larvae; he went on to suggest that woodpeckers following the squirrels and doing targeted digs around the exit tunnels was a possibility.

In one paper on a tropical species of squirrel, it was observed that they prefer palm nuts infested with beetle larvae. The authors also note that squirrels have a strong preference for obtaining food in the most efficient manner, and that Eastern gray and fox squirrels will choose nuts lacking an endocarp (the hard inner shell) over those that are harder to open. When confronted with an endocarp, the tropical squirrels would attack it at its weakest and thinnest point, as do Eastern gray and fox squirrels :

Two of these pores have dead ends (with 1-mm depth), and the third is the germinal pore, which is deeper but is closed by a soft and easily penetrable tissue, located on the side opposite the fruit’s internal gibbosity. The internal gibbosity is a projection of the endocarp that inhibits the squirrel’s access to the endosperm when the fruit is opened from the side containing the dead-end pores. The squirrel must determine the position of the internal gibbosity to avoid it and thus save energy and time in obtaining the endosperm. These rodents are known to identify the side without the internal gibbosity even before beginning to open the fruit, with >90 percent success (Bordignon et al. 1996, Mendes & Candido-Jr 2014). However, how the squirrel identifies the side without the internal gibbosity remains unknown. As the gibbosity is always on the side opposite the germinal pore (Bordignon et al. 1996), this pore is an important access point that the squirrel can use to open the fruit efficiently. It is believed that the squirrel manipulates the fruit by pressing the three pores with its upper incisors, using the pore without a dead end for support so that the lower incisors can open the endocarp (Bordignon et al. 1996).

Efficiency is one of the main factors that determine the foraging strategy of Sciuridae. A laboratory study conducted with the squirrels S. carolinensis and S. niger found that individuals preferred various species of nuts with low energetic value that lacked an endocarp or shell over high energy nuts with an endocarp (Smith & Follmer 1972). These results suggest that there is a high cost in energy expenditure for processing seeds with endocarps for these species.

(Alves et al. “Queen palm fruit selection and foraging techniques of squirrels in the Atlantic Forest,” Biotropica 50(2): 274–281 2018). Efficiency is an important consideration in this context, especially with respect to hickories.

The reasons squirrels strip bark are poorly understood. Pine (or red) squirrels attack a number of tree species, “[d]uring winter, spring, and early summer, bark stripping and tree girdling for consumption of phloem and cambial tissues is common (Hosley, 1928; Linzey and Linzey, 1971; Pike, 1934). Pine squirrels also eat the bark of rust galls (Salt and Roth, 1980) as well as sap from sugar maple trees (Acer saccharum) in the northeast (Hamilton, 1939; Hatt, 1929; Heinrich, 1992; Kilham, 1958; Klugh, 1927; Layne, 1954) and yellow birch (Betula alleghaniensis) in the Great Smoky Mountains (Linzey and Linzey, 1971). Widespread, systematic sugar tapping by pine squirrels occurs in New England (Heinrich, 1992).” (Steele, M. A. 1998. “Pine squirrel (Tamiasciurus hudsonicus),” Mammalian Species 586:1–9).

Red squirrels have also been observed feeding on spruce bark beetles. (Pretzlaw, et al. “Red Squirrels (Tamiascurius hudsonicus) Feeding on Spruce Bark Beetles (Dendroctonus Ruffipennis): Energetic and Ecological Implications”, Journal of Mammalogy, 87(5):909–914, 2006). This was a novel observation at the time, and the behavior appears to have been a sudden and opportunistic response to a climate change-related bark beetle outbreak that lowered cone production. Spruce bark is soft, flaky, and fairly loosely adhering, and the bark beetles spend approximately a year, the entirety of their larval life cycle, in the phloem and hence are a readily available food source for a prolonged period. Moreover, “[f]oraging for larval spruce bark beetles by red squirrels is an obvious and stereotyped behavior; squirrels situate themselves on the trunk of the tree near ground level and peel off the bark to reveal and ingest larvae.”

There seems to be less agreement as to why Eastern gray and fox squirrels strip bark. It has been suggested that a calcium deficiency might be primary driver. C.P. Nichols et al., “A novel causal mechanism for grey squirrel bark stripping: The Calcium Hypothesis,” Forest Ecology and Management 367 (2016) 12–20. Bark stripping by Eastern gray and fox squirrels seems to be more prevalent in areas where the species have been introduced, “[b]ark-stripping behaviour, reported so often in Europe (Shuttleworth et al. 2015), is extremely rare in their native range (Kenward 1989).” (Koprowski et al. “Gray not grey: The ecology of Sciurus carolinensis in their native range in North America”, posted on Researchgate.com, 2016).

While “extremely rare” is an overstatement, it does appear that bark stripping occurs more frequently in areas where gray and fox squirrels have been introduced. It is a major problem in the U.K and Europe but mostly an annoyance in the United States. It seems reasonable to infer that it is more common in suburban and residential areas than in mature bottomland hardwood forests, though Wylie points out that the discrepancy in the reporting may be due to demographic factors and that squirrel behavior in bottomland hardwood forests has been poorly studied.

Gray and fox squirrel bark stripping seems to occur most frequently on branches, and I found no images in which insect infestation of the scaled areas was apparent. In addition, the examples of extensive squirrel scaling found online in no way resemble what we’re finding on hickories. Thus far, we have found only two references to squirrels stripping bark from trees in the genus Carya, one from pecans in Georgia and one from limbs in West Texas pecan orchards, where fox squirrels have been introduced. It’s not clear what parts of the trees were involved in Georgia and whether this report also came from an orchard, but regardless, pecan bark is flaky and not criss-crossed, making it easier to scale.

While neither Wylie nor I conducted an exhaustive literature review, we found no records of gray or fox squirrels scaling bark from any bitternut or pignut hickories (Carya cordiformis and Carya glabra), be it on limbs or boles, in several Google searches. Given the extensive range of these species – most of the Eastern United States and into Canada – and the association between squirrels and oak-hickory habitats, if squirrel scaling of hickories occurred with any regularity within the natural ranges, one would expect references to be abundant in both the popular and scientific literature.

As mentioned in the previous post and implied above, I suspect that the criss-cross pattern that characterizes pignut and bitternut hickory bark is one factor that deters squirrels from removing it and may prevent them from removing it in large pieces. This relates more generally to the question of efficiency. The characteristics of hickory bark make it extremely difficult for any creature to remove. In addition to the pattern of the grain, it is literally the hardest, strongest, thickest bark in the forest. On mature boles it can be 3/4″ thick (compared to around 1/16″ for a hickory endocarp). It is tight (though less so when sap is flowing), and it retains these characteristics long after death. Bitternut hickory bark does not flake, and pignut does so infrequently and superficially.

Thus, both species are exceedingly poor candidates for stripping by squirrels, especially when sweet gums and an array of other much easier targets are available. In contrast to the hickories, the target tree in this deployment was a sweet gum, three years dead, with thinner, considerably softer, loosening bark

As I see it, all of this militates against squirrels as the original source of the hickory scaling. While this is inferential and we have yet to document whatever initiates the scaling, the data obtained thus far support the inference. Only recently have we been able to deploy enough trail cameras for a meaningful and sustained effort. Nevertheless, we have had many hours of captures since 2009, in both search areas. To my knowledge, the only prior unambiguous capture of squirrel scaling is the one from 2015; it involved a downed, immature sweet gum with thin bark, which was easy for squirrels to scale. A second clip may show a squirrel removing a very modest quantity of thin bark from a sweet gum limb that was already being scaled by Pileated Woodpeckers (second video clip at end of post), and Wylie observed a squirrel scaling a sweet gum branch (on a roadside just outside the main search area) in December 2015.

I no longer think scaling on sweet gum limbs (so heavily emphasized in Tanner) is a strong indicator of ivorybill presence, at least not on its own, although what we’ve found in the search area seems to be unusual. Abundance, lack of correlation with low mast years, bark chips, absence of incisor marks, and indications of woodpecker activity, especially targeted digging, may all be suggestive. Sweet gums, which are very attractive to beavers, are likely one of the most desirable targets for squirrels as well, for reasons of flavor and efficiency.

But we have documented no squirrel scaling on hickories, live or dead, on limbs or on boles, partially scaled or with bark intact.

I think the results from this deployment shed considerable light on the issue of squirrels and bark scaling, especially what they do (or can do?) on a mature bole with thick bark. So let’s go to the videotape, as a New York sportscaster used to yell.

Squirrels on a Sweet Gum Bole

As with the previous post, our Plotwatcher Pro trail cam is programmed to capture one image every twenty seconds, and these time-lapse sequences have been converted into QuickTime movie format. If you want to get a clearer sense of how the squirrels are behaving, you can step through the films frame-by-frame. If you elect to watch just one of the clips, the one from May 8 that starts at Frame 1500 (the squirrel spent 24 minutes on the scaled surface) or the one from May 12 that starts at Frame 1574 might be your best bets. Discussion and close-ups of the scaled surface follows the bonus imagery.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While we had no woodpecker detections on the stub and bird captures were few, we did catch some hogs (piglets?) and a beaver. Also captured but not shown were a Northern Cardinal and an Eastern Phoebe.

 

 

Discussion and Details

As best I can tell, the only expansion of the scaled area involved a narrow strip at the upper right, probably no more than 12″ x 2″, and a little widening at the very top, although this was an area where the squirrels spent a considerable amount of time.

Let’s look at some details from that scaled area.

P1170436

Upper Part of Scaled Surface Showing New Work

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While there appears to have been some woodpecker excavation at the middle left of the larger scaled patch, there’s no readily apparent sign that woodpeckers have been after the insects that are feeding in the sapwood. Nor is there any strong indication that squirrels were feeding on insects over the course of this deployment, though it’s possible they took advantage of snails and beetles, like the ones in the photo, or slugs, which I also saw on the scaled patch.

The edges of the bark shown in the close-ups, especially the one at the top, show signs of having been gnawed, although this is subtle, and sometimes impractical as an identifier, since such close examination is not always possible in the field. I presume that the abundant squiggly abrasions to the surface of the underlying wood are incisor marks, something we have not observed with other scaling we’ve found.

With regard to what was left behind, the first three photos show what I found at the base of the snag when I discovered the scaling on May 1, 2018.

 

The large, though narrow, strip of bark was the biggest one I found at the base and is one of the main reasons I suspect that woodpeckers initiated the scaling with squirrels following, although I would not rule squirrel out completely. In any event, the bark was so soft and weak that it broke in my hand when I picked it up on June 11. The other thin strips are more consistent with what I’d expect for squirrel, and the tiny orange pieces of cambium are a giveaway.

The situation had changed little during this most recent trip. The picture with my boot shows the larger pieces of bark I found at the base, including the one shown above after it broke. They may be consistent with woodpecker (possibly including Red-bellied or Hairy), but I suspect that both squirrels and woodpeckers were involved in the bark removal.

 

Edited to add: For any extensive squirrel work on mature boles, especially hickories, I would expect to find many small pieces of bark on the ground, similar to those shown above, as in this dramatic example.

My main objective in targeting this stub was to observe it over time, more for what might happen as the decay advanced and whether it might become a target for ivorybills; it’s the type of “stump” that Pearson described as being favored by ivorybills after his visit to the Singer Tract in 1932, though Pearson’s “stump” (scroll down in the linked article) was much longer dead.  The bark scaling, while interesting, was in the “could have been anything” category. Getting this data on squirrels was a pleasant surprise, one that I should have anticipated based on the small bits of cambium on the ground. My bias came into play, as I ascribed them to a smaller woodpecker. Between Wylie and the trail cam results, I’ve learned a lesson. In terms of the bigger picture, however, the results so far suggest that squirrels are not the source of the putative Ivory-billed Woodpecker scaling on hickories.


Trip Report: January 25-30, 2018

From January 25-30, Stephen Pagans and Erik Hendrickson and I searched in the vicinity of Joseph Saucier’s October sighting. I’ll begin with a day-by-day log accompanied by some photographs, followed by a discussion of our observations and what they may imply, with photographs from our last day in the field. I’ll end with some or Erik’s photos. They help convey the experience of being in the field more effectively than most of mine. This is an image heavy post, so I hope you’ll take the time to look at and enjoy the pictures.

We had no possible sightings or auditory encounters and devoted most of our time to surveying. We did a few ADK series, sometimes followed by Erik’s tooting on a baritone sax mouthpiece, the best imitation of the Singer Tract kents I’ve heard.

DSCF1114

Mark Michaels in Background, Double Knocking with Cypress Dowels. Stephen Pagans at right.  Photo by Erik Hendrickson

There were no apparent responses. Scaling consistent with what’s described for ivorybill was abundant in most areas visited. Large and possibly suggestive cavities were also relatively easy to find. This contrasts with the primary search area, where cavities of any size are difficult to locate. This may be due to the ~30% lower canopy at this location.

We covered between 4 and 5 miles most days. For the most part, we tried to avoid repeating the same tracks. We saw substantial flocks of Rusty Blackbirds on a couple of occasions. We didn’t encounter many mammals – an armadillo, a rabbit, and some glimpses of hogs. We found little beaver sign but didn’t get into the area where we understand beavers are most abundant.

 

We spent the 25th and 26th in the immediate vicinity of the sighting. The habitat in this area is extensive and impressive, as it was in most places we visited. We found considerably more scaling on this trip than on the last one, as well as more cavities. As mentioned previously, the cypress in this area was not heavily logged, so many large trees remain, not all of them as obviously undesirable as the ones shown.

 

 

Suggestive Scaling and Cavities Found January 25 and 26, 2018. Scaled tree species include sweet gum, honey locust, and sugarberry.

The 27th was a rainout. We spent that morning birding from the road around a nearby lake. I went to Alexandria for a brief visit to the annual meeting of the Louisiana Ornithological Society.

On the 28th, which was cloudy and drizzly, we went to a different nearby location. Again, we found some decent or better habitat, a good deal of bark scaling, and other indications of woodpecker activity, including a cavity resembling an ivorybill roost in an unpublished image from the Singer Tract. By late morning, we reached an area of much younger forest, so we turned back.

IMGP5783

IMGP5789

One of the cavities strongly resembled one of Tanner’s unpublished images of an ivorybill roost.

IMGP5781

IMG_1115

Ivory-billed Woodpecker Roost in Dead Ash, Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

On the 29th, we visited a different area, also nearby. The habitat was again impressive, but we only found one recently and extensively scaled sweet gum with very large chips at the base and an unusual bit of excavation on the edge of a scaled part of the trunk. An area that we could not reach appeared to contain even more mature forest and probably merits a visit in future.

 

On the 30th, we found another entry point. About two miles into the woods, we found more sweet gum scaling than I’ve seen in a single day, approaching or surpassing the quantity found during the most productive weeks in our main search area. Again, we found a number of potentially interesting cavities, new and old, including one in a cottonwood snag that had been extensively stripped of bark, this along the edge of an old logging road. We guessed that this concentration of scaling was in a patch of around 100 acres, but we were unable to explore it fully, so we can’t be sure how extensive it might be.

With the passage of time, I’m even more struck by the extraordinary nature of what we found on the 30th.

Some Comments on the Scaling and Cavities

As noted, I was impressed by the abundance of scaling found in the vicinity of the sighting and even more so in the concentration found on the 30th. The latter was truly unprecedented in my experience. As was the case in Tanner’s day, sweet gums with dying crowns are the primary target. The work found is consistent with that shown and described by Tanner. More on sweet gums below.

Additional work was found on honey locust, sugarberry, American elm, and cottonwood. Bark on all of these species (possibly excluding cottonwood which has high adhesion values and bark strength) becomes easy to remove fairly rapidly after death, and none of the scaling approached what I’d consider possibly diagnostic for ivorybill (again perhaps excluding the cottonwood). Still, the quantity of it may be significant.

IMGP5867

IMGP5870

Scaled cottonwood snag with large cavity. While this snag is longer dead than some, the scaling is not recent. Cottonwood bark shares properties with hickory and probably adheres more tightly for longer than the bark of many other species, including sweet gum.

We found no scaling on oaks. (The same has been true in the main search area, except in 2012-2013.) Steve suggested this may be due to the fact that the forest is relatively young, so the oaks are still healthy.

The sweet gum scaling was mostly found in clusters, with the notable exception of the single tree found on the 29th. This may be due to the pattern of sweet gum die-off, but we did visit areas with unscaled, dead and dying gums.

The sweet gum scaling ranged from old to very fresh, probably a year or two to a day or two. All trees were recently dead, with twigs and sometimes gum balls and leaves attached. Much of it was extensive, involving larger limbs and sometimes main trunks. Bark chips ranged from very small and consistent with what I’d expect for PIWO, to larger strips that I’ve also tended to ascribe to PIWO, to much larger chunks that I think are considerably less likely to be Pileated.

 

Regarding the sweet gum scaling in general, I have only found a similar quantity and quality of scaling on this species in our main search area and at this location. Scaling in the old Project Coyote search area was on a wider variety of species, with only a little on sweet gums. I never saw anything like this in over two weeks in Congaree or in briefer visits to other areas. The Carlisles, who are searching in the Pascagoula area, have found at most a similar looking example or two over several seasons, and Paul McCaslin, one of the earliest Project Coyote team members recently sent me a note reading: “I am still amazed, every time, at the scaling pics you send from the tops of those sweetgum trees. I am an ISA Certified Arborist and spend a lot of time looking up at trees and I NEVER see anything even close up on my neck of the woods.”

To cut to the chase – if Ivory-billed Woodpeckers are not present and this work is being done by Pileateds, then I don’t think either quantity or apparent quality of bark scaling on sweet gums can be treated as a reliable indicator of ivorybill presence.

 

With regard to other tree species, I still think that the work on hickories found in the main search area is likely diagnostic. Work on live or very recently dead honey locusts (like the one in some of the old trail cam photos), cottonwoods, sugarberries (one example found in in the old search area) and oaks (one or two examples found in the old search area and several found in the new one in 2012-2013) may be as well.  Though I’ve grown increasingly cautious about sweet gums, the concepts discussed in the post entitled Bark: An Exegesis still hold.

Some Closing Thoughts

Though I have now spent multiple days in this area without any possible ivorybill contacts, I remain very impressed by the habitat and continue to think the initial report is highly credible. The scaling is abundant and suggestive, as are the cavities. However, the extensiveness is daunting, and I don’t see a way for a small, self-funded group to search it effectively. In the current search area, we have the benefits of compactness and known, readily accessible locations where there have been frequent possible contacts over a period of years. I think there’s a good possibility that ivorybills are present in the vicinity of Joseph’s sighting, and there’s sufficient habitat to make detection very difficult. I’m at a loss as to how to find them (without an infusion of J.J. Kuhn’s skills as a ‘woodsman’), if indeed any are there.

Here are some of Erik’s photos for your enjoyment.

 

 


Strips, Flakes, Chips, Chunks, and Slabs: Squirrels, Pileated Woodpeckers, and Ivorybills, Part 4

Careful examination of bark chips found in conjunction with extensive scaling is one of the key elements in our diagnostic gestalt, but “chips”, a term I’ve been using for years, is both inaccurate and too vague for what we believe is being left behind by Ivory-billed Woodpeckers and for differentiating it from the leavings of other animals. Tanner used “pieces” of bark, ranging “from the size of a “silver dollar to the size of “a man’s hand.” A caption from the National Geographic article on the 1935 Allen and Kellogg expedition that refers to “large chunks of bark”.  The existing images of these pieces of bark suggest that chunks is the better term.

It’s important to reiterate that this discussion applies only to live and freshly dead hardwoods. Pines slough bark quickly after death. The process is slower in hardwoods, but as decay progresses, the bark loosens considerably, with the rate of loosening depending on species and environmental conditions. Once the bark has loosened sufficiently, PIWOs can and do scale bark extensively, sometimes leaving behind large chips. In the images that follow (from Allen and Kellogg and Tanner), the bark chips ascribed to ivorybills appear to come from considerably longer dead trees than some of the examples we’ve found, but the images are informative.

Ivorybill Scaling Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

Ivorybill Scaling Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

The small tree shown above, identified as a “dead gum” by the 1935 expedition, appears to be a hackberry or sugarberry not a gum, and a fairly long dead one; the pieces of bark at the base resemble ones we found beneath hackberries or sugarberries in our old search area, some of which were considerably larger (the one below is the largest).

DSC01153

This colorized slide reveals more about the bark at the base of these pines than the black and white print in Tanner (Plate 9).

There’s also this example, (Plate 10 in Tanner), which appears to be in a considerably more advanced state of decay, and presumably looser, than much of the work we find most interesting. I suspect most of the grubs were placed on the chip for illustrative purposes; the caption “Beetle larvae from beneath bark of Nuttall’s oak” is ambiguous as to where the larvae, which appear to be small Cerambycidae, were actually found.

What I think is most salient in Tanner’s description of bark chips is shape not size. In this regard, it seems important to come up with a more specific set of terms to replace the commonly used “chips”. I’d suggest using chunks and slabs for suspected ivorybill work (although smaller pieces of bark may also be present). Pileated bark removal can involve chips, strips, or flakes, the last when they’re doing the layered scaling discussed here and here. I suspect that squirrels remove hardwood bark primarily or exclusively in strips, and of course, their bark removal on cypresses leaves shredded bark hanging from the trees.

Let’s take a closer look at the differences among pieces of bark we have reason to believe were left by squirrels, those we have reason to believe were left behind by Pileated Woodpeckers, and those we suspect were left behind by Ivory-billed Woodpeckers.

I collected a number of bark chips from the tree we know to have been scaled by a squirrel, and while these were removed before our camera trap revealed the source, there’s strong reason to think they too were left behind by squirrels.

SquirrelChips

Note the uniformly elongated shape and the ragged appearance at the tops and bottoms of these strips of bark. This is not typical of bark that we infer or know to have been removed by woodpeckers, and it’s consistent with chewing, not scaling. The presumed squirrel strips I collected had the following dimensions:

9”x2.5”

7”x2.25”

5.75”x2″

7.5”x1.75”

4”x1.75”

The downed sweet gum from which they had been removed was a fairly young tree, and the bark is much thinner than on more mature ones. These strips were approximately 1/8″ thick. While this is a very small sample, we suspect (along with Houston from IBWO.net) that approximately 3″ is the upper limit for width when a squirrel is doing the bark removal.

Our research and observations suggest that Pileated Woodpeckers have two strategies for removing tight bark; one involves pecking around the edges until they can gradually pry off small pieces, and the other involves scaling away strips, sometimes in layers. Their physical structure precludes them from doing the extensive, clean scaling of tight bark that Tanner associated with ivorybills.

We suspect that this collection of chips, from a honey locust near a known Pileated nest, reflects the range of what the species is capable of doing on a tight-barked hardwood (and honey locust bark is relatively thin). The upper limit appears to be hand size, with many-quarter sized or smaller.

IMG_0250.JPG

The following are measurements of some fairly typical suspected Pileated strips from a sweet gum:

7”x1”

8”x.8”

7”x.8”

6”x.8”

The strips shown below, suspected Pileated Woodpecker leavings from a high branch, are on the large end of the spectrum for this category of work. The Peterson Guide is 9.5″ x 6.5″. I can’t rule squirrel out completely for these.

DSC01477

Flakes resemble strips, but they are removed in layers, so that reaching the sapwood is a gradual process. Pileated scaling frequently has this appearance, something that seems frequently to be the case with congeners, including the larger-billed Black Woodpecker (Dryocopus martius).

DSC01396

DSC01190

The chunks and slabs we suspect to be ivorybill work are significantly larger and thicker than strips, flakes and chips, although strips and chips may be present in the mix at the base of suspected feeding trees. Chunks are usually more irregular and varied in size and shape, and both chunks and slabs sometimes have what appear to be strike marks from a broad bill.

I kept one of the chunks scaled from the hickory tree on the homepage, a fairly typical example. It is 8.5″x3.5″ and .375″ thick. (It has undoubtedly lost some of its thickness after drying for over two years.)

Hickory2Chips

The sweet gum chunk with the apparent bill mark Frank is holding is 7.5″x3″ and .25″ thick. On mature, thicker barked trees most or all suspected ivorybill chunks, chips, and slabs will have been removed cleanly, all the way down to the sapwood.

Frank adds:

This particular bark “chunk” is intriguing on several levels. We have found that markings many describe as “bill marks” are really truncated galleries between the bark and sapwood. Marks made by woodpecker bills are distinctive, but somewhat subtle, and easily overlooked. This chunk actually has two interesting markings – markings that were left by the animal that removed the bark. The first is near the end of my left thumb – my right index finger is pointing toward it. It is about a quarter inch wide, a bit over a half inch long, and three sixteenths of an inch or so thick. The other is a “V” shaped “notch” at the end of the chunk, near the center of the photo. These places look as if they’ve been struck with a chisel – hard enough to rip the bark away from the sapwood/cambium. This suggests that, even though this bark was very tight, very few strikes were required to loosen and remove it. Granted that these marks are bill strikes, this suggests that the bird removing bark is indeed a powerful animal for its size. Back to Mark.

DSC00031The two preceding examples are on the smaller side for suspected ivorybill work; in the first, the density, tightness, and grain of hickory bark seem to be a limiting factor on size. Some of the larger examples are shown in the Bark Chip Gallery (as are several of the images shown above). A couple of additional examples of larger slabs are below. In the first, the oak was approximately 8 months dead (leaves attached), and the bark was still tight. (The fractured slab was damaged in transit.)

DSC01217

DSC00074