Insights, Ants, and Old Growth: a Nuanced View of the Ivorybill’s Decline and Possible Survival

I’ve just finished reading Tanner’s dissertation and have gained some new insights into topics that have been discussed in a number of earlier posts.

Conventional wisdom, following Tanner, holds that the Ivory-billed Woodpecker’s decline and possible extinction were caused by habitat loss, specifically the logging of old growth forests during the 19th and early 20th centuries. Birdlife International’s fact sheet on the species suggests “that large contiguous tracts of mature woodland would be required to support a viable population”, referencing Jackson 2002. Snyder et al. have proposed an alternative hypothesis that “human depredation was the primary factor.”  (p.9).

Tanner’s model depends on the idea that food supply was the limiting factor on ivorybill populations, because the species is highly specialized, and that old growth conditions were optimal or essential. While Tanner was aware that ivorybills bred successfully in an area that was predominantly second growth, at Mack’s Bayou, he glossed over this fact in the monograph, and became more dogmatic about old growth as a requirement in later years.

Snyder and some others have contended that the ivorybill is a generalist. According to Snyder, “the data available on diet and foraging methods simply do not provide compelling evidence for strong feeding specialization.” Snyder goes on to suggest that “[i]ts apparent skill in exploiting recently dead timber, coupled with its ability to feed in a variety of other ways, may even have given it some significant foraging advantages over the pileated woodpecker, a species apparently much less capable of bark stripping. Indeed, the pileated woodpecker, like other Dryocopus woodpeckers, may well be more of a food specialist than any of the Campephilus woodpeckers.” (p. 37).

As I see it, there are elements of truth in both models, but neither is complete. In addition, I think that each model relies on at least one flawed premise.

The old growth/virgin forest component of Tanner’s model fails to account for the facts that the Singer Tract population was dwindling even before logging began in earnest and that birds appear to have remained in the Tract until well after it had been extensively logged. Tanner suggested another possibility, “perhaps the greatest factor reducing the rate of ivorybill reproduction is the failure of some birds to nest. One reason for their not breeding is immaturity, for it is probable that ivorybills do not nest until they are two years old. Another possibility is that the quantity of food available to the woodpeckers may determine whether they will nest or not.” (p. 83).

Tanner struggled to account for the fact that the ivorybill population at Singer was dwindling by the mid-1930s, even though overall habitat quality had, if anything, improved relative to what it had been a few decades earlier. He attributed the higher relative abundance in previous years to tree mortality due to fires that took place in 1917 and 1924. Tanner also recognized the probable importance of fire in the pre-contact era, although he seems to have been unaware of the ways pre-contact Native Americans used fire, both for agriculture and habitat management. (The impacts of Native American fire use were almost surely different from what occurred in the 20th century Singer Tract).

Neither Tanner (whose study predates the emergence of the discipline) nor Snyder, take environmental history sufficiently into account. There had been major ‘changes in the land’ long before large scale logging began in the southeast and before the reports of local abundance on which Snyder relies. These changes include: the post-contact collapse of Native American civilizations, the introduction of European plant and animal species, the clearing of log jams on major and secondary North American rivers, habitat fragmentation due to the plantation economy, and the near extirpation of the beaver.

All of these elements likely contributed to a major decline in ivorybill populations. Ivory-billed woodpeckers likely concentrated locally in response to major disturbances, regardless of whether forests were old-growth or advanced second-growth, and this type of specialization caused birds to congregate, making it easier for collectors to kill them in large numbers in short periods of time. Snyder likely misinterpreted this collection of large numbers of Ivory-bills in short periods of time as reflecting a greater regional abundance. In contrast, and more consistent with Tanner, this ecological response to disturbed areas led, in some places, to the collectors extirpating regional populations.

In the latter part of the 19th century, hunting probably sped the collapse of the remaining population, but Snyder’s claim that available data on diet and foraging methods do not provide compelling evidence of specialization fails to account for the anatomical and other evidence that suggests otherwise. It also fails to account for the Pileated Woodpecker’s far more extensive range and ability to thrive in a wider variety of habitats, including badly fragmented and degraded ones. I made some of the case for specialization in a series of recent posts, but there’s more to add, especially with regard to ants.

In one of those posts, I hypothesized that the inability to exploit ants as a food resource was a key component, perhaps the primary component, in explaining the decline of the ivorybill. A commenter asked whether there’s evidence to support the idea that ivorybills and other Campephilus woodpeckers don’t feed on ants and also whether there’s evidence to support the idea that Campephilus woodpeckers don’t regurgitate.

Adult Campephilus woodpeckers rarely feed on ants but do not feed them to their young. They make frequent trips to the nest with food items stored in the bill or at the back of the bill. (M. Lammertink, pers. comm.) Dryocopus woodpeckers and those in closely related genera (the “tribe” Malarpicini) feed their young by regurgitating, while other woodpeckers do not. (Manegold and Topfer, 2012). I think the capacity of Pileated Woodpeckers to consume ants in large quantities and to feed them to their young is a significant distinguishing factor and that Tanner was correct in suggesting that food supply was a major limiting factor on Ivory-billed Woodpecker populations.

Ants comprise up to 33% of the world’s terrestrial animal biomass. In Finland, they comprise as much as 10%. In tropical forests, the percentage is much higher, exceeding vertebrate biomass by 400%. Tanner’s comparative analysis of available ivorybill and pileated food did not include ants, so Tanner’s comparative estimate of available insect prey – suggesting that pileateds in the Singer Tract had access to approximately four times what ivorybills did – was in fact extremely low.

Tanner’s dissertation concludes with a discussion of Audubon’s ivorybill dissection, something that was omitted from the monograph. While I had a passing familiarity with the Audubon material, I had not looked at it carefully. Nor had I compared his ivorybill and pileated dissections.

Tanner wrote: “The proventriculus is both muscular and glandular. Audubon’s drawings and text indicate that the proventriculus of a Pileated is much larger in proportion to the stomach than is the case in the Ivory-bill.” Audubon described the ivorybill proventriculus as being only minimally wider than the esophagus. By contrast, the pileated proventriculus as “an immense sac, resembling a crop, 2 1/4 inches in length and 1 and 5 twelfths in width,” or nearly three times as wide as the esophagus.

Screen Shot 2016-07-11 at 1.47.01 PM

Audubon’s drawing of Ivory-billed Woodpecker digestive tract showing slightly widened proventriculus.

Screen Shot 2016-07-11 at 1.47.28 PM

Audubon’s drawing of Pileated Woodpecker digestive tract showing large, sac-like proventriculus.

The proventriculus and stomach of one of Audubon’s specimens contained “a vast mass of ants and other insects”. According to Bent, Beal found one pileated stomach that contained 2,600 ants. (Others contained fewer, 153 and 469, according to Sutton.) Thus, it’s clear that even if ivorybills sometimes ate ants, they lacked the capacity to consume them in large quantities, let alone feed them to their young.

This supports Tanner’s view that specialization was a limiting factor on ivorybill populations. I’ve previously suggested that this might apply only to breeding season, but it seems reasonable to infer that it’s a factor year-round, based on the differences in proventricular structure.

All of that said, I’d argue that this specialization should not necessarily be read to include dependence on large tracts of mature, contiguous forest. The data from the Singer Tract suggest that even under these ‘optimal’ conditions, breeding was limited. And the fact that the Mack’s Bayou birds bred successfully in an area of second growth suggests that birds could thrive under ‘suboptimal’ conditions. The extent to which survival might be possible in fragmented habitat is less clear, but Snyder (citing Jackson) refers to the Mississippi population of six pairs in a 19.2 square mile forest that Tanner missed; the tract is less than 1/6 the area of the Singer Tract and is smaller than many contemporary wildlife management areas.

The tract, known as Allen Gray Estate, was west of Skene, Mississippi in Bolivar County; some or all of it is now part of Dahomey National Wildlife Refuge; the US Fish and Wildlife Service Habitat Management Plan for the refuge (2013) states that the forested portion of the refuge comprises 8100 acres and provides this historical information, “Dahomey NWR is located on the grounds of the old Dahomey Plantation founded in 1833 by F.G. Ellis and named after the homeland of his slaves. Much of the land west of the refuge was probably cleared for cultivation around this time. The land went through several owners and was purchased by Allen Gray in 1936. The portion that became the refuge was known as the “Allen Gray Woods”. This was the only significant portion of the plantation still forested.”  This 8100 acre figure is 25% lower than the figure reported by Jackson and Snyder.

While I have been unable to find a detailed logging history of Bolivar County, it is in the heart of the Mississippi Delta, which was known for its plantations. Between 1900 and 1940, Bolivar County was more densely populated than Madison Parish: 39.1 people per square mile as opposed to 18.9 in Madison Parish in 1900, 78.92 as opposed to 22.78 in 1930, and 74.57 as opposed to 28.33 in 1940. Based on population density and the number of towns, it seems self-evident that the habitat in Bolivar County was considerably more fragmented than was the Singer Tract.

Thus, there is good reason to question Tanner’s old growth model as well as the idea that large contiguous tracts of mature forest are required. Similarly, there’s good reason to question Snyder’s argument that hunting rather than specialization was the primary cause of the ivorybill’s collapse.

Efforts to reintroduce the beaver in the southeast began in the 1930s, and the population has been growing ever since. Beavers injure trees by partially or fully girdling them and by altering hydrology, which weakens or kills trees at the edges of the ponds they create. Beaver damage renders trees more vulnerable to infestation by ivorybill prey species, something we’ve observed repeatedly in our search area. In Tanner’s day and in the late 19th century, the beaver was barely a part of the southeastern ecosystem, but by the 1950s, beavers again were playing a role in altering southern forests, whether mature or successional.

If the ivorybill was able to survive the logging of the last large tracts of old growth forest, as I think it was, the reintroduction of the beaver may have been central to its persistence. If this hypothesis is valid, there is considerably more potential habitat today than there was in Tanner’s era; much of this potential habitat has been overlooked or dismissed in organized search efforts; and the dismissals of post-Tanner reports based on his habitat model rely, at least in part, on a false premise.

 

 

 


Scaling Data 2012-2016

To expand on some of the data included toward the end of the March trip report (which is worth reading in in conjunction with this post), I thought it would be informative to provide a season by season and sector by sector breakdown of the scaling I and others involved with Project Coyote have found since the spring of 2012. To do so, I’ve gone through my notes and photographs and have done my best to reconstruct the data collected. While not complete (I’m quite sure a good deal more scaling was found in Sector 3 during 2013-2014, for example), I think this breakdown is a fairly accurate reflection of what we’ve found over the years.

As discussed in previous posts, I think extensive scaling on hickory boles is the most compelling for Ivory-billed Woodpecker. Bark on this species is thick, dense, and usually remains very tight for a long time. Extensive scaling on sweet gum boles and oaks (upper boles and large branches) is second among work that I’ve found. Work on small boles, and higher and smaller branches is somewhat less compelling and is more significant for its abundance. Some of the high branch scaling and work on smaller boled sweet gums may well have been done by Pileated Woodpeckers (and possibly by Hairy Woodpeckers), but the abundance, the presence of large bark chips in many cases, the way it appears in clusters, and the fact that Pileateds scale infrequently suggest a different source for much of it.

I have excluded all work where squirrels are suspected but have counted one tree, a hickory found this year, on which the work could well have been that of a Hairy Woodpecker. Hairies do forage for Cerambycid beetles just under the bark, but they’re only capable of removing tight bark in small pieces; their work on hickories is perhaps more accurately described as excavation through the bark.

The trail cam images toward the end of this post are the best we have (out of many thousands of hours of coverage) showing how these species forage on suspected ivorybill feeding trees.

All trees were live or recently dead (twigs and sometimes leaves attached). All scaling was on live or recently dead wood.
Screen Shot 2016-06-08 at 8.09.41 AM
Totals

Sweet Gum (Liquidambar styracifula)

Sector 1:         46

Sector 2:         8

Sector 3:         51

                        105         (84.68%)        

~15% had scaling on boles (a few of these were large trees). The majority of work was on crowns, including larger branches. Fallen trees were included when woodpecker involvement was evident and bark was tight.

Bitternut Hickory (Carya cordiformis)

Sector 1:            3

Sector 2:            4

Sector 3:            7

                           14         (11.29%)

All trees were standing; scaling was on boles and was very extensive (the tree shown on the homepage is one example) with one exception from this year . Insect tunnels were visible in all examples. An additional hickory with a modest amount of high branch scaling was found in Sector 1 this year but was not counted for this analysis.

Oak (Quercus) spp.

Sector 1:         1

Sector 2:         4

Sector 3:         0

                         5         (4.03%)

All oaks had scaling on large branches; one also had some on the bole. All oaks in Sector 2 were found in a single cluster.

We have some information on forest composition in Sector 3, and it appears that sweet gums make up approximately 19%, oaks upwards of 35%, and hickories somewhere under 10%. Sectors 1 and 2 may differ and be more varied in overall composition.

The overwhelming preference for sweet gums relative to their abundance stands out. The scaled oaks are a mix of species, one Nuttall’s, one willow, the others unidentified.

In Sector 3, I am treating the compact stretch from the location of Frank Wiley’s sighting last spring/downed sweet gum top where we had the camera trap to just south of our current deployment as a cluster. The estimate of 23 trees being found in this area is conservative. I have only found one instance of recent scaling north of the location of the downed limb/Frank’s 2015 sighting. The main cluster has been in the same vicinity this year and last, with additional work scattered around farther south. Two of the hickories are within 30 yards of each other, approximately half a mile from the cluster, and one was on the edge of the concentration.

It also may be significant to note that we found a cluster of old but intriguing cavities in the same vicinity as the Sector 3 concentration in 2013-2014. Most of these seem to have fallen. The difficulty we’re having finding active, suggestive cavities is vexing, and may be the most compelling reason to be skeptical about the presence of ivorybills in the area. At the same time, finding Pileated cavities is difficult, even in defended home ranges.

I’m treating Sector 1 as a single concentration; the vast majority of the work is on a natural levee where sweet gums are abundant. The entire area is considerably larger than the other clusters, but given the abundance and ease with which we’ve found sign there over the last five seasons, I think it constitutes one area of concentration.

In Sector 2, there was a small cluster in the area where I recorded putative kent calls in 2013, with work found in 2012 (spring and fall) and 2013. Because the area is small with open sight lines, I can be confident there has been no recent work there since late in 2013 (I last passed through it with Tom Foti back in March of this year.)

The sweet gum work Tom and I found on that day was perhaps half a mile north of this cluster, within 100 yards of the hickory on the homepage. The other hickories found in the 2013 and 2014 seasons were not far away, no more than 500 yards apart as the crow flies.

There’s obviously some bias here, since there’s a relationship between finding feeding sign in a given area and spending time there. Nevertheless, I have little doubt that the putative ivorybill work tends to be clustered. I also have little doubt about the strong preference for sweet gums, since I’m not looking at tree species when I look for scaling. The degree to which sweet gums are favored has only become clear over the last year or so.

Frank pointed out this data does not reflect most of the scaling that likely exists in relatively close proximity to the Sector 3 cluster but cannot be quantified because it is in an area we have intermittently visited due to  inaccessibility. Only two or three examples are from this area, which has been visited a handful of times.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Old Material, New Light: More from the Archives Part 2

In late December 2014, I wrote what I’ve described as a speculative post titled, “Is There a Way to Recognize Ivory-billed Woodpecker Excavation? In that post, I relied on Tanner’s Plate 11,

020_jpg

Tanner’s Plate 11, “Dead hackberry, fed upon frequently by Ivory-bills”. Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

a brief description from the monograph: “When Ivory-bills dig, they chisel into the sap and heartwood for borers like other woodpeckers, digging slightly conical holes that are usually circular in cross section (Plate 11)”, and online imagery showing the work of other Campephilus woodpeckers. Material found during my recent visits to Kroch library at Cornell lends some support to the ideas contained in that post, and so does T. Gilbert Pearson’s photograph of a tree that had been fed on by ivorybills. Holt:Pearson Tree

The archival material includes additional images of ivorybill excavation and a considerably more detailed description by Tanner in a document prepared for the Cuban search in the 1980s. The passage includes somewhat more detail on bark scaling than is found elsewhere, but more importantly it describes ivorybill excavations as “hard to distinguish from similar digging by the Red-bellied Woodpecker”.

IMG_1107

Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

This description may seem counterintuitive to some. Despite my own writing to the effect that ivorybill morphology may lead the species to dig less efficiently than pileateds and my references to targeted digging, I still had an underlying assumption that the size of the bird would correlate with the size of the dig and that ivorybill excavation would often resemble the familiar large furrows dug by PIWOs. While a couple of the holes in Plate 11 and in Pearson’s photograph may well involve the merging of more than one dig, it appears that ivorybill excavations are usually more targeted and that large furrows are not typical.

Also of interest for multiple reasons, including the observation of birds scaling very small limbs and of one feeding 5′ from the ground, are Tanner’s field notes from April 3rd, 1937.

IMG_1100

IMG_1101

Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library

I’ll let the remaining images of known and suspected ivorybill excavations speak for themselves and will conclude with a few from our search area that seem consistent with known ivorybill work. While I’m nowhere near as confident about this material as I am about scaling, I suspect that finding excavations that are consistent with what ivorybills are known to have done in conjunction with scaling is suggestive.

I hope this material will be useful for other searchers. All images from the Singer Tract below are courtesy of the Division of Rare and Manuscript Collections, Cornell University Library. Most of these images were published in Tanner’s dissertation but have not been widely disseminated.

IMG_1112

OakNest copy

Ash Roost

'35 Nest Tree copy

1935 Nest Tree, Red Maple

RMC2006_0563

 

detail

1935 Nest Tree and Detail from a Different Perspective

And now some examples from our search area that resemble the existing images of known ivorybill excavation. This is not something I’ve focused on, so I’ve probably missed other examples.

IMG_0924_2IMGP1897

IMG_0854IMGP1579IMGP1476

IMGP1452

Image at bottom is a detail of the sweet gum snag above. I suspect that more than one species of woodpecker is involved.

There will be one or two more installments in this series, but the next post is likely to be a trip report, probably the last for this season.


More on Scaling and Squirrels, Part 1

This is will be the first in a series of 3-4 posts. The subject is multifaceted and subtle. Nuances can be hard to convey in words and accompanying illustrations; it’s easier to do in talks, with bark chips in hand to provide a more visceral sense of what’s being described. Still, it seems important to make the effort.

I realize now while my initial approach to evaluating feeding sign was rigorous, I grew somewhat lackadasical and overconfident. I also got distracted by the abundant scaling on downed sweet gums we started finding a year or so ago. I’m now confident that squirrels did much of this scaling, but the same does not apply to most of the other work we’ve found over the years.

Even before we discovered that squirrels were scaling bark on downed sweet gums (and quite possibly on standing trees as well), I was contemplating a post that broke down the bark scaling we’re finding into several categories. I was aware of having gotten away from the criteria I had laid out in the past and was feeling a desire to be more specific. That seems like a good place to begin, before delving too deeply into the nuances of distinguishing between squirrel and putative ivorybill work.

The following are the different types of interesting feeding sign we’re finding. Bear in mind that this pertains only to hardwoods that appear to be alive or recently dead and are known or suspected to have tight bark, except in cases where work appears to be old but still has characteristics that suggest it was done when bark was tight. The types of sign are ranked in the order of what I think is the likelihood that most or all of it is being left by Ivory-billed Woodpeckers, although the gap among categories 1-4 is small. (Frank would reverse categories 1 and 2.)

  1. Scaling on standing boles, low enough on the trunk to be examined up close. This includes both standing trees and ones with tops broken off. The sapwood of trees in this category has multiple large exit tunnels. The most prevalent species in this category is bitternut hickory, which has very thick, dense, tight bark, but we’ve also found it on sweet gums and oaks. This scaling is extensive and has a distinctive pattern that’s immediately recognizable in the field, an almost jagged appearance, although the actual edges are curved. The tree on the homepage is one example, and the image below illustrates how even when the scaling is not recent, this distinctive appearance remains. Bark chips are easiest to find for this type of work.

    Old scaling on hickory, 2015

    Old scaling on hickory, 2015. Note the exit tunnels and the absence of other woodpecker work, save for a small dig near the top of the scaled area.

  2. Scaling on standing boles, low enough on the trunk to be examined up close. Few or no large exit tunnels but signs of insect infestation under the bark. Superficial bill marks may be evident in the remaining cambium or on the surface of the sapwood. Tree species in this category include sweetgums and oaks. Chips are similarly easy to find.IMG_0144Lateral strike marks in the cambium
  3. Scaling that has the appearance of the work in category 1 but that cannot be examined up close. No possibility of examining bark chips.Hickory3
  4. Scaling higher on boles and lower branches of standing trees where exit tunnels may be visible, but close examination is not possible. In some cases, these trees are seen at a distance, across water bodies, so there’s no opportunity to look for chips. As is the case in categories 1 and 2, older scaling may go untouched by woodpeckers for extended periods. The first example below is recent; the second is probably more than two years old.
    Hickory3Top

    Top of scaled hickory.

    IMGP0376

    Older scaling on dead top with exit tunnels.

     

  5. Scaling on higher branches of standing trees. Since these are often seen at some distance and in poor lighting conditions, it can also be more difficult to assess the freshness of the work, and the nature of infestation. Bark chips are usually much harder to find under these circumstances. Squirrels typically girdle limbs and often scale on the undersides of large, higher branches. Thus, when larger branches are at less than approximately a 70 degree angle, work on the underside may indicate a squirrel as the source, while the presence of extensive scaling limited to the upper side may be strongly suggestive of or diagnostic for woodpecker.BigSGLimb
  6. Scaling on downed trees or limbs that are at least in part more than 4’ from the ground.Detail of scaling on downed sweet gum.
  7. Scaling on downed trees and limbs that are mostly or all horizontal and less than 4’ from the ground.
    Work now suspected to squirrel on downed sweet gum.

    Work now suspected to be squirrel on downed sweet gum.

    IMGP0936

    Suspected Pileated Woodpecker work on same downed sweet gum

There’s an additional category that is somewhat different from the others. This involves work we’ve found on freshly dead, small sweet gums (>1’ dbh) with evidence of ambrosia beetle infestation. These trees have been stripped of bark, with some accompanying signs of excavation, ranging from targeted digging that resembles the work of Magellanic Woodpeckers (as on the left branch below) to the appearance of having been attacked with a hatchet. We think this work has strong potential for ivorybills, since we’ve found only three examples of it, in close proximity, and in an area with an abundance of other suggestive sign.HackedUpGum

It’s important to point out that when I use the word “scaling”, I am referring only to the clean removal of bark with little or no damage to underlying sapwood. While I have been quite adamant about this as a characteristic, some elaboration is probably in order, as my statements were made in reaction to woodpecker work that was often described as “scaling” in the early search years but was really bark removal in conjunction with excavation, something that’s typical of Pileated Woodpeckers. There still seems to be a good deal of misunderstanding on this subject, and the distinction is not always easy to communicate.

On close examination of some scaled areas, especially in category 1 but also in others, there are signs of targeted digging (but not deep or extensive excavation). This can range from a very slight expansion of an exit tunnel, apparently by probing with the tip of the bill, to what may be a harder strike or two, to a somewhat deeper but still targeted dig into the sapwood. Since many other species of woodpecker are capable of doing such targeted digging, I only consider this aspect when it’s in association with extensive, contiguous removal of bark. This will be explored in more depth in the next post in the series.

In category 1, known ivorybill prey species have been found under the bark or on the scaled surface of two trees. When exit tunnels are found on these trees in this category, they are consistent with infestation by large Cerambycid beetle larvae. I hypothesize that these trees are being scaled when the gregarious larvae have dug their exit tunnels but have not yet sealed their pupation chambers. This would be the stage at which they are most nutritious and most easily accessible for a species of woodpecker adapted to bark scaling, but the opportunity exists only within a very narrow time frame.

For several trees in categories 1 and 2, camera deployments of 2-4 months duration produced no return visits or evidence of what was doing the scaling; in a couple of cases Pileated Woodpeckers were photographed on the target trees for fairly protracted periods. In one, the pileated removed a few small pieces of bark, and in the other it appeared to do a little pecking and gleaning but did not remove any bark. We have revisited several of the other trees over periods ranging from months to two and a half years. One tree in category 2 (no tunnels) had a return visit approximately four months after the first one, when the bark was still tight. Several others, both with and without tunnels and including one first found in June of 2013 and re-examined during my last trip, had no obvious new scaling and little or no excavation of any kind, despite being in a more advanced state of decay

It’s also important to note that we have reason to believe that at least some of the work in all categories is being done by woodpeckers. For example, on the downed sweet gum shown above to illustrate category 7, found in November, there is obvious woodpecker work (likely Pileated) on the bole and apparent squirrel work on the upper limbs. Similarly we suspect woodpeckers did the scaling on the larger downed sweet gum (category 5) – mostly scaled higher but with some work within 4’ of the ground. I found this tree in May 2014, approximately 50 yards from the site of where we captured the squirrel stripping bark; while I do not recall looking for or examining bark chips, the edges of the scaled areas appear chiseled rather than gnawed, and the scaling on some of the higher limbs is on the upper side only.

The next post on this topic will examined the targeted expansion of exit tunnels and will revisit the similarities between what we’re finding and the work of other Campephilus woodpeckers. The following one will focus on bark chips and distinguishing between signs of gnawing and signs of scaling.